The Optimality of Naive Bayes.

朴素贝叶斯分类器 机器学习 贝叶斯程序设计 Bayes错误率 人工智能 条件独立性 贝叶斯分类器 贝叶斯定理 计算机科学 分类器(UML) 数学 贝叶斯因子 支持向量机 贝叶斯概率
作者
Harry Zhang
出处
期刊:The Florida AI Research Society 卷期号:: 562-567 被引量:1408
摘要

Naive Bayes is one of the most efficient and effective inductive learning algorithms for machine learning and data mining. Its competitive performance in classification is surprising, because the conditional independence assumption on which it is based, is rarely true in realworld applications. An open question is: what is the true reason for the surprisingly good performance of naive Bayes in classification? In this paper, we propose a novel explanation on the superb classification performance of naive Bayes. We show that, essentially, the dependence distribution; i.e., how the local dependence of a node distributes in each class, evenly or unevenly, and how the local dependencies of all nodes work together, consistently (supporting a certain classification) or inconsistently (canceling each other out), plays a crucial role. Therefore, no matter how strong the dependences among attributes are, naive Bayes can still be optimal if the dependences distribute evenly in classes, or if the dependences cancel each other out. We propose and prove a sufficient and necessary conditions for the optimality of naive Bayes. Further, we investigate the optimality of naive Bayes under the Gaussian distribution. We present and prove a sufficient condition for the optimality of naive Bayes, in which the dependence between attributes do exist. This provides evidence that dependence among attributes may cancel out each other. In addition, we explore when naive Bayes works well. Naive Bayes and Augmented Naive Bayes Classification is a fundamental issue in machine learning and data mining. In classification, the goal of a learning algorithm is to construct a classifier given a set of training examples with class labels. Typically, an example E is represented by a tuple of attribute values (x1, x2, , · · · , xn), where xi is the value of attribute Xi. Let C represent the classification variable, and let c be the value of C. In this paper, we assume that there are only two classes: + (the positive class) or − (the negative class). A classifier is a function that assigns a class label to an example. From the probability perspective, according to Bayes Copyright c © 2004, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. Rule, the probability of an example E = (x1, x2, · · · , xn) being class c is p(c|E) = p(E|c)p(c) p(E) . E is classified as the class C = + if and only if fb(E) = p(C = +|E) p(C = −|E) ≥ 1, (1) where fb(E) is called a Bayesian classifier. Assume that all attributes are independent given the value of the class variable; that is, p(E|c) = p(x1, x2, · · · , xn|c) = n ∏

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一一给轻松白桃的求助进行了留言
1秒前
zz2905完成签到,获得积分10
1秒前
小超人完成签到 ,获得积分10
2秒前
香蕉初瑶完成签到,获得积分10
2秒前
meimei完成签到 ,获得积分10
2秒前
儒雅的菠萝吹雪完成签到,获得积分10
3秒前
3秒前
4秒前
水寒完成签到,获得积分10
4秒前
拉长的念珍完成签到,获得积分10
5秒前
大气夜山完成签到 ,获得积分10
5秒前
Tristan完成签到 ,获得积分10
7秒前
我思故我在完成签到,获得积分10
7秒前
8秒前
何浏亮完成签到,获得积分10
9秒前
阿成完成签到,获得积分10
9秒前
Pauline完成签到 ,获得积分10
9秒前
10秒前
微笑的语芙完成签到,获得积分10
10秒前
10秒前
小背包完成签到 ,获得积分10
10秒前
水寒发布了新的文献求助10
12秒前
希望天下0贩的0应助17采纳,获得10
12秒前
yu完成签到 ,获得积分10
12秒前
钟瑞乾完成签到,获得积分10
12秒前
花痴的电灯泡完成签到,获得积分10
13秒前
虚心念桃完成签到,获得积分10
14秒前
jiaolulu发布了新的文献求助10
15秒前
zyw完成签到 ,获得积分10
15秒前
ironsilica完成签到,获得积分10
18秒前
19秒前
被动科研完成签到,获得积分10
21秒前
斗牛的番茄完成签到 ,获得积分10
22秒前
所所应助时尚俊驰采纳,获得10
22秒前
zgt01发布了新的文献求助10
26秒前
背后如彤完成签到 ,获得积分10
28秒前
29秒前
通通通完成签到,获得积分10
30秒前
李治海完成签到,获得积分10
30秒前
诸葛烤鸭完成签到,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022