The Optimality of Naive Bayes.

朴素贝叶斯分类器 机器学习 贝叶斯程序设计 Bayes错误率 人工智能 条件独立性 贝叶斯分类器 贝叶斯定理 计算机科学 分类器(UML) 数学 贝叶斯因子 支持向量机 贝叶斯概率
作者
Harry Zhang
出处
期刊:The Florida AI Research Society 卷期号:: 562-567 被引量:1408
摘要

Naive Bayes is one of the most efficient and effective inductive learning algorithms for machine learning and data mining. Its competitive performance in classification is surprising, because the conditional independence assumption on which it is based, is rarely true in realworld applications. An open question is: what is the true reason for the surprisingly good performance of naive Bayes in classification? In this paper, we propose a novel explanation on the superb classification performance of naive Bayes. We show that, essentially, the dependence distribution; i.e., how the local dependence of a node distributes in each class, evenly or unevenly, and how the local dependencies of all nodes work together, consistently (supporting a certain classification) or inconsistently (canceling each other out), plays a crucial role. Therefore, no matter how strong the dependences among attributes are, naive Bayes can still be optimal if the dependences distribute evenly in classes, or if the dependences cancel each other out. We propose and prove a sufficient and necessary conditions for the optimality of naive Bayes. Further, we investigate the optimality of naive Bayes under the Gaussian distribution. We present and prove a sufficient condition for the optimality of naive Bayes, in which the dependence between attributes do exist. This provides evidence that dependence among attributes may cancel out each other. In addition, we explore when naive Bayes works well. Naive Bayes and Augmented Naive Bayes Classification is a fundamental issue in machine learning and data mining. In classification, the goal of a learning algorithm is to construct a classifier given a set of training examples with class labels. Typically, an example E is represented by a tuple of attribute values (x1, x2, , · · · , xn), where xi is the value of attribute Xi. Let C represent the classification variable, and let c be the value of C. In this paper, we assume that there are only two classes: + (the positive class) or − (the negative class). A classifier is a function that assigns a class label to an example. From the probability perspective, according to Bayes Copyright c © 2004, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. Rule, the probability of an example E = (x1, x2, · · · , xn) being class c is p(c|E) = p(E|c)p(c) p(E) . E is classified as the class C = + if and only if fb(E) = p(C = +|E) p(C = −|E) ≥ 1, (1) where fb(E) is called a Bayesian classifier. Assume that all attributes are independent given the value of the class variable; that is, p(E|c) = p(x1, x2, · · · , xn|c) = n ∏

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助duoya采纳,获得10
刚刚
xwxhbydmet发布了新的文献求助10
刚刚
bhc完成签到,获得积分10
刚刚
刚刚
刚刚
桐桐应助月月采纳,获得10
刚刚
yzy完成签到,获得积分10
刚刚
刚刚
qp发布了新的文献求助10
1秒前
1秒前
liao完成签到,获得积分20
1秒前
yuna_yqc完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
大模型应助吉尼斯贝贝采纳,获得10
2秒前
347发布了新的文献求助20
2秒前
3秒前
alpv完成签到,获得积分10
3秒前
ef完成签到,获得积分10
3秒前
晒晒太阳发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
ZLS发布了新的文献求助10
4秒前
zzbyxh发布了新的文献求助20
4秒前
CNYDNZB发布了新的文献求助10
5秒前
彭于晏应助淡然白安采纳,获得10
5秒前
冷静的冷珍完成签到,获得积分10
5秒前
甜兰儿完成签到,获得积分10
5秒前
稚生w发布了新的文献求助10
6秒前
zz完成签到,获得积分10
6秒前
想吃螺蛳粉完成签到,获得积分10
6秒前
582697438发布了新的文献求助10
6秒前
娇气的涵柏完成签到,获得积分20
6秒前
科研发布了新的文献求助10
6秒前
yyy0202关注了科研通微信公众号
7秒前
jinxixi完成签到,获得积分10
7秒前
大模型应助缥缈的凝丹采纳,获得10
7秒前
登登灯灯发布了新的文献求助20
8秒前
微瑕发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284