亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Optimality of Naive Bayes.

朴素贝叶斯分类器 机器学习 贝叶斯程序设计 Bayes错误率 人工智能 条件独立性 贝叶斯分类器 贝叶斯定理 计算机科学 分类器(UML) 数学 贝叶斯因子 支持向量机 贝叶斯概率
作者
Harry Zhang
出处
期刊:The Florida AI Research Society 卷期号:: 562-567 被引量:1408
摘要

Naive Bayes is one of the most efficient and effective inductive learning algorithms for machine learning and data mining. Its competitive performance in classification is surprising, because the conditional independence assumption on which it is based, is rarely true in realworld applications. An open question is: what is the true reason for the surprisingly good performance of naive Bayes in classification? In this paper, we propose a novel explanation on the superb classification performance of naive Bayes. We show that, essentially, the dependence distribution; i.e., how the local dependence of a node distributes in each class, evenly or unevenly, and how the local dependencies of all nodes work together, consistently (supporting a certain classification) or inconsistently (canceling each other out), plays a crucial role. Therefore, no matter how strong the dependences among attributes are, naive Bayes can still be optimal if the dependences distribute evenly in classes, or if the dependences cancel each other out. We propose and prove a sufficient and necessary conditions for the optimality of naive Bayes. Further, we investigate the optimality of naive Bayes under the Gaussian distribution. We present and prove a sufficient condition for the optimality of naive Bayes, in which the dependence between attributes do exist. This provides evidence that dependence among attributes may cancel out each other. In addition, we explore when naive Bayes works well. Naive Bayes and Augmented Naive Bayes Classification is a fundamental issue in machine learning and data mining. In classification, the goal of a learning algorithm is to construct a classifier given a set of training examples with class labels. Typically, an example E is represented by a tuple of attribute values (x1, x2, , · · · , xn), where xi is the value of attribute Xi. Let C represent the classification variable, and let c be the value of C. In this paper, we assume that there are only two classes: + (the positive class) or − (the negative class). A classifier is a function that assigns a class label to an example. From the probability perspective, according to Bayes Copyright c © 2004, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. Rule, the probability of an example E = (x1, x2, · · · , xn) being class c is p(c|E) = p(E|c)p(c) p(E) . E is classified as the class C = + if and only if fb(E) = p(C = +|E) p(C = −|E) ≥ 1, (1) where fb(E) is called a Bayesian classifier. Assume that all attributes are independent given the value of the class variable; that is, p(E|c) = p(x1, x2, · · · , xn|c) = n ∏

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu8577完成签到 ,获得积分10
刚刚
1秒前
smile发布了新的文献求助10
1秒前
YJL完成签到 ,获得积分10
3秒前
rrrred发布了新的文献求助10
7秒前
回眸完成签到 ,获得积分10
8秒前
Duduk完成签到 ,获得积分10
9秒前
10秒前
rrrred完成签到,获得积分10
14秒前
南宫连虎发布了新的文献求助10
16秒前
传奇3应助cc采纳,获得10
19秒前
39秒前
量子星尘发布了新的文献求助10
39秒前
longh发布了新的文献求助20
41秒前
cc发布了新的文献求助10
43秒前
aa发布了新的文献求助10
44秒前
lucky完成签到 ,获得积分10
45秒前
123完成签到,获得积分10
54秒前
55秒前
55秒前
fat完成签到,获得积分10
58秒前
123发布了新的文献求助10
59秒前
脑洞疼应助lf采纳,获得10
1分钟前
健壮的花瓣完成签到 ,获得积分10
1分钟前
oywt发布了新的文献求助10
1分钟前
霸气鞯完成签到 ,获得积分10
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
bbdd2334发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李健的小迷弟应助bbdd2334采纳,获得10
1分钟前
1分钟前
忧伤的风华完成签到,获得积分10
1分钟前
thanhvader999完成签到,获得积分10
1分钟前
小乘号子发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204482
捐赠科研通 3257320
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613