The Optimality of Naive Bayes.

朴素贝叶斯分类器 机器学习 贝叶斯程序设计 Bayes错误率 人工智能 条件独立性 贝叶斯分类器 贝叶斯定理 计算机科学 分类器(UML) 数学 贝叶斯因子 支持向量机 贝叶斯概率
作者
Harry Zhang
出处
期刊:The Florida AI Research Society 卷期号:: 562-567 被引量:1408
摘要

Naive Bayes is one of the most efficient and effective inductive learning algorithms for machine learning and data mining. Its competitive performance in classification is surprising, because the conditional independence assumption on which it is based, is rarely true in realworld applications. An open question is: what is the true reason for the surprisingly good performance of naive Bayes in classification? In this paper, we propose a novel explanation on the superb classification performance of naive Bayes. We show that, essentially, the dependence distribution; i.e., how the local dependence of a node distributes in each class, evenly or unevenly, and how the local dependencies of all nodes work together, consistently (supporting a certain classification) or inconsistently (canceling each other out), plays a crucial role. Therefore, no matter how strong the dependences among attributes are, naive Bayes can still be optimal if the dependences distribute evenly in classes, or if the dependences cancel each other out. We propose and prove a sufficient and necessary conditions for the optimality of naive Bayes. Further, we investigate the optimality of naive Bayes under the Gaussian distribution. We present and prove a sufficient condition for the optimality of naive Bayes, in which the dependence between attributes do exist. This provides evidence that dependence among attributes may cancel out each other. In addition, we explore when naive Bayes works well. Naive Bayes and Augmented Naive Bayes Classification is a fundamental issue in machine learning and data mining. In classification, the goal of a learning algorithm is to construct a classifier given a set of training examples with class labels. Typically, an example E is represented by a tuple of attribute values (x1, x2, , · · · , xn), where xi is the value of attribute Xi. Let C represent the classification variable, and let c be the value of C. In this paper, we assume that there are only two classes: + (the positive class) or − (the negative class). A classifier is a function that assigns a class label to an example. From the probability perspective, according to Bayes Copyright c © 2004, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. Rule, the probability of an example E = (x1, x2, · · · , xn) being class c is p(c|E) = p(E|c)p(c) p(E) . E is classified as the class C = + if and only if fb(E) = p(C = +|E) p(C = −|E) ≥ 1, (1) where fb(E) is called a Bayesian classifier. Assume that all attributes are independent given the value of the class variable; that is, p(E|c) = p(x1, x2, · · · , xn|c) = n ∏

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Re发布了新的文献求助10
1秒前
我是老大应助galaxy采纳,获得10
1秒前
1秒前
1秒前
入骨发布了新的文献求助10
1秒前
SCIAI应助缥缈耷采纳,获得20
2秒前
赘婿应助yy123采纳,获得10
2秒前
秋秋发布了新的文献求助10
3秒前
科研通AI5应助kaka123采纳,获得30
3秒前
芭乐完成签到,获得积分10
4秒前
科研通AI2S应助加油科研采纳,获得10
5秒前
烟花应助TomatoPan采纳,获得10
5秒前
Hello应助落后的哈密瓜采纳,获得10
5秒前
6秒前
CodeCraft应助cadnash采纳,获得10
6秒前
Sean发布了新的文献求助10
6秒前
6秒前
6秒前
娃娃鱼完成签到,获得积分10
7秒前
7秒前
科目三应助十七采纳,获得10
7秒前
舒心的万声完成签到,获得积分10
7秒前
8秒前
欧阳欢完成签到,获得积分10
9秒前
脑洞疼应助戴岱采纳,获得10
9秒前
小羊枣泥发布了新的文献求助10
10秒前
10秒前
嘿嘿发布了新的文献求助10
10秒前
鲜于枫发布了新的文献求助30
10秒前
Brocade完成签到,获得积分10
11秒前
11秒前
12秒前
入骨完成签到,获得积分20
12秒前
yukie发布了新的文献求助10
12秒前
石筱四完成签到 ,获得积分10
12秒前
哈吉米发布了新的文献求助10
12秒前
Lucas应助落后的哈密瓜采纳,获得10
12秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970172
求助须知:如何正确求助?哪些是违规求助? 3514982
关于积分的说明 11176568
捐赠科研通 3250212
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875702
科研通“疑难数据库(出版商)”最低求助积分说明 805004