The Optimality of Naive Bayes.

朴素贝叶斯分类器 机器学习 贝叶斯程序设计 Bayes错误率 人工智能 条件独立性 贝叶斯分类器 贝叶斯定理 计算机科学 分类器(UML) 数学 贝叶斯因子 支持向量机 贝叶斯概率
作者
Harry Zhang
出处
期刊:The Florida AI Research Society 卷期号:: 562-567 被引量:1408
摘要

Naive Bayes is one of the most efficient and effective inductive learning algorithms for machine learning and data mining. Its competitive performance in classification is surprising, because the conditional independence assumption on which it is based, is rarely true in realworld applications. An open question is: what is the true reason for the surprisingly good performance of naive Bayes in classification? In this paper, we propose a novel explanation on the superb classification performance of naive Bayes. We show that, essentially, the dependence distribution; i.e., how the local dependence of a node distributes in each class, evenly or unevenly, and how the local dependencies of all nodes work together, consistently (supporting a certain classification) or inconsistently (canceling each other out), plays a crucial role. Therefore, no matter how strong the dependences among attributes are, naive Bayes can still be optimal if the dependences distribute evenly in classes, or if the dependences cancel each other out. We propose and prove a sufficient and necessary conditions for the optimality of naive Bayes. Further, we investigate the optimality of naive Bayes under the Gaussian distribution. We present and prove a sufficient condition for the optimality of naive Bayes, in which the dependence between attributes do exist. This provides evidence that dependence among attributes may cancel out each other. In addition, we explore when naive Bayes works well. Naive Bayes and Augmented Naive Bayes Classification is a fundamental issue in machine learning and data mining. In classification, the goal of a learning algorithm is to construct a classifier given a set of training examples with class labels. Typically, an example E is represented by a tuple of attribute values (x1, x2, , · · · , xn), where xi is the value of attribute Xi. Let C represent the classification variable, and let c be the value of C. In this paper, we assume that there are only two classes: + (the positive class) or − (the negative class). A classifier is a function that assigns a class label to an example. From the probability perspective, according to Bayes Copyright c © 2004, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. Rule, the probability of an example E = (x1, x2, · · · , xn) being class c is p(c|E) = p(E|c)p(c) p(E) . E is classified as the class C = + if and only if fb(E) = p(C = +|E) p(C = −|E) ≥ 1, (1) where fb(E) is called a Bayesian classifier. Assume that all attributes are independent given the value of the class variable; that is, p(E|c) = p(x1, x2, · · · , xn|c) = n ∏

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助熊猫小宇采纳,获得10
刚刚
ding应助三川采纳,获得10
1秒前
1秒前
seven发布了新的文献求助10
2秒前
2秒前
2秒前
是假的发布了新的文献求助10
2秒前
3秒前
科研虫文献求助号完成签到,获得积分10
3秒前
和谐依波发布了新的文献求助10
3秒前
zzzx完成签到,获得积分10
3秒前
lindanhong应助669采纳,获得30
3秒前
thousandlong发布了新的文献求助10
4秒前
4秒前
caiganyuhhh完成签到,获得积分10
4秒前
4秒前
5秒前
Lucas应助晴天采纳,获得10
5秒前
s0x0y0完成签到,获得积分10
6秒前
6秒前
李...完成签到,获得积分10
6秒前
王羲之发布了新的文献求助10
6秒前
xixi完成签到 ,获得积分10
6秒前
传奇3应助zzz6286采纳,获得10
7秒前
7秒前
看文章的小余完成签到,获得积分10
8秒前
劲秉应助Mae采纳,获得10
8秒前
肥羊七号发布了新的文献求助10
9秒前
10秒前
十月天完成签到,获得积分10
12秒前
童年的秋千完成签到,获得积分10
13秒前
二宝完成签到,获得积分10
14秒前
深情安青应助Mr_H采纳,获得10
14秒前
15秒前
袁思宇发布了新的文献求助10
15秒前
xukaixuan001发布了新的文献求助10
15秒前
完美世界应助王羲之采纳,获得10
15秒前
大黄日记本完成签到,获得积分10
16秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
金属中的晶界偏聚 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296653
求助须知:如何正确求助?哪些是违规求助? 2932396
关于积分的说明 8456490
捐赠科研通 2604886
什么是DOI,文献DOI怎么找? 1422087
科研通“疑难数据库(出版商)”最低求助积分说明 661288
邀请新用户注册赠送积分活动 644356