亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multitask Learning With Recurrent Neural Networks for Acute Respiratory Distress Syndrome Prediction Using Only Electronic Health Record Data: Model Development and Validation Study

急性呼吸窘迫综合征 可解释性 接收机工作特性 医学 人工神经网络 人工智能 循环神经网络 机器学习 急诊分诊台 计算机科学 急性呼吸窘迫 低氧血症 深度学习 数据挖掘 急诊医学 内科学
作者
Carson Lam,Rahul Thapa,Jenish Maharjan,Keyvan Rahmani,Chak Foon Tso,Navan Preet Singh,Satish Casie Chetty,Qingqing Mao
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:10 (6): e36202-e36202 被引量:13
标识
DOI:10.2196/36202
摘要

Acute respiratory distress syndrome (ARDS) is a condition that is often considered to have broad and subjective diagnostic criteria and is associated with significant mortality and morbidity. Early and accurate prediction of ARDS and related conditions such as hypoxemia and sepsis could allow timely administration of therapies, leading to improved patient outcomes.The aim of this study is to perform an exploration of how multilabel classification in the clinical setting can take advantage of the underlying dependencies between ARDS and related conditions to improve early prediction of ARDS in patients.The electronic health record data set included 40,703 patient encounters from 7 hospitals from April 20, 2018, to March 17, 2021. A recurrent neural network (RNN) was trained using data from 5 hospitals, and external validation was conducted on data from 2 hospitals. In addition to ARDS, 12 target labels for related conditions such as sepsis, hypoxemia, and COVID-19 were used to train the model to classify a total of 13 outputs. As a comparator, XGBoost models were developed for each of the 13 target labels. Model performance was assessed using the area under the receiver operating characteristic curve. Heat maps to visualize attention scores were generated to provide interpretability to the neural networks. Finally, cluster analysis was performed to identify potential phenotypic subgroups of patients with ARDS.The single RNN model trained to classify 13 outputs outperformed the individual XGBoost models for ARDS prediction, achieving an area under the receiver operating characteristic curve of 0.842 on the external test sets. Models trained on an increasing number of tasks resulted in improved performance. Earlier prediction of ARDS nearly doubled the rate of in-hospital survival. Cluster analysis revealed distinct ARDS subgroups, some of which had similar mortality rates but different clinical presentations.The RNN model presented in this paper can be used as an early warning system to stratify patients who are at risk of developing one of the multiple risk outcomes, hence providing practitioners with the means to take early action.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
珊丹完成签到,获得积分10
1分钟前
珊丹发布了新的文献求助10
1分钟前
1分钟前
深情安青应助珊丹采纳,获得10
1分钟前
搞学术完成签到 ,获得积分10
2分钟前
微笑驳完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
YUAN121发布了新的文献求助10
3分钟前
YUAN121完成签到,获得积分10
3分钟前
JrPaleo101应助科研通管家采纳,获得10
3分钟前
WerWu完成签到,获得积分10
4分钟前
最棒哒完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
乐观海云完成签到 ,获得积分10
5分钟前
JrPaleo101应助科研通管家采纳,获得10
5分钟前
小胡爱科研完成签到 ,获得积分10
5分钟前
maodeshu应助深情断秋采纳,获得10
7分钟前
JrPaleo101应助科研通管家采纳,获得10
7分钟前
maodeshu应助好巧采纳,获得10
7分钟前
啦啦鱼完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
豆乳米麻薯完成签到,获得积分10
8分钟前
桐桐应助奋斗若冰采纳,获得10
8分钟前
8分钟前
奋斗若冰发布了新的文献求助10
9分钟前
深情断秋完成签到,获得积分20
9分钟前
JrPaleo101应助科研通管家采纳,获得10
9分钟前
JrPaleo101应助科研通管家采纳,获得10
9分钟前
深情断秋发布了新的文献求助10
9分钟前
9分钟前
优雅盼海发布了新的文献求助10
9分钟前
maodeshu应助潇洒的奇异果采纳,获得10
10分钟前
tly驳回了maodeshu应助
10分钟前
优雅盼海完成签到 ,获得积分20
10分钟前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
The AASM International Classification of Sleep Disorders – Third Edition, Text Revision (ICSD-3-TR) 490
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3280407
求助须知:如何正确求助?哪些是违规求助? 2918501
关于积分的说明 8390461
捐赠科研通 2589602
什么是DOI,文献DOI怎么找? 1410990
科研通“疑难数据库(出版商)”最低求助积分说明 657857
邀请新用户注册赠送积分活动 639110