Binary Spatial Random Field Reconstruction from Non-Gaussian Inhomogeneous Time-series Observations

随机场 计算机科学 系列(地层学) 二进制数 领域(数学) 高斯分布 算法 估计员 压缩传感 空间分析
作者
Sheng, Shunan,Xiang, Qikun,Nevat, Ido,Neufeld, Ariel
出处
期刊:Cornell University - arXiv
摘要

We develop a new model for binary spatial random field reconstruction of a physical phenomenon which is partially observed via inhomogeneous time-series data. We consider a sensor network deployed over a vast geographical region where sensors observe temporal processes and transmit compressed observations to the Fusion Center (FC). Two types of sensors are considered; one collects point observations at specific time points while the other collects integral observations over time intervals. Subsequently, the FC uses the compressed observations to infer the spatial phenomenon modeled as a binary spatial random field. We show that the resulting posterior predictive distribution is intractable and develop a tractable two-step procedure to perform inference. First, we develop procedures to approximately perform Likelihood Ratio Tests on the time-series data, for both point sensors and integral sensors, in order to compress the temporal observations to a single bit. Second, after the compressed observations are transmitted to the FC, we develop a Spatial Best Linear Unbiased Estimator (S-BLUE) in order for the FC to reconstruct the binary spatial random field at an arbitrary spatial location. Finally, we present a comprehensive study of the performance of the proposed approaches using both synthetic and real-world experiments. A weather dataset from the National Environment Agency (NEA) of Singapore with fields including temperature and relative humidity is used in the real-world experiments to validate the proposed approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯板栗发布了新的文献求助10
1秒前
元谷雪应助liu采纳,获得10
2秒前
liuchuck完成签到 ,获得积分10
2秒前
2秒前
yyyk发布了新的文献求助10
3秒前
4秒前
5秒前
xxnn发布了新的文献求助10
5秒前
Yan0909完成签到,获得积分10
7秒前
Accccc发布了新的文献求助10
9秒前
yyyk完成签到,获得积分10
10秒前
12秒前
星辰大海应助木木采纳,获得10
12秒前
xxnn完成签到,获得积分10
13秒前
zkyyinf_zero完成签到,获得积分10
13秒前
lkj发布了新的文献求助10
13秒前
郜不正完成签到,获得积分10
13秒前
孙二二发布了新的文献求助10
17秒前
tobino1完成签到,获得积分10
17秒前
科研通AI5应助谷粱紫槐采纳,获得10
18秒前
哇卡卡应助柳浪采纳,获得20
19秒前
21秒前
濮阳雨旋完成签到 ,获得积分10
22秒前
SYLH应助lkj采纳,获得10
24秒前
木木发布了新的文献求助10
27秒前
酷波er应助魏莱采纳,获得10
29秒前
29秒前
冷酷仙人掌完成签到,获得积分10
30秒前
30秒前
冷艳莛完成签到,获得积分10
30秒前
共享精神应助CCCCC采纳,获得10
32秒前
33秒前
ziller发布了新的文献求助10
34秒前
莫愁完成签到 ,获得积分10
35秒前
念初完成签到 ,获得积分10
35秒前
35秒前
Stanfuny发布了新的文献求助10
36秒前
田様应助renxiaoting采纳,获得10
36秒前
西里应助会跑的小太阳采纳,获得20
36秒前
张张发布了新的文献求助10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732389
求助须知:如何正确求助?哪些是违规求助? 3276704
关于积分的说明 9998127
捐赠科研通 2992255
什么是DOI,文献DOI怎么找? 1642086
邀请新用户注册赠送积分活动 780202
科研通“疑难数据库(出版商)”最低求助积分说明 748713