Graph Learning Based on Signal Smoothness Representation for Homogeneous and Heterogeneous Change Detection

计算机科学 人工智能 合成孔径雷达 图形 模式识别(心理学) 阈值 增采样 高斯分布 理论计算机科学 图像(数学) 量子力学 物理
作者
David Alejandro Jimenez-Sierra,David Alfredo Quintero-Olaya,Juan Carlos Alvear-Munoz,Hernán Darío Benítez-Restrepo,Juan F. Florez-Ospina,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:7
标识
DOI:10.1109/tgrs.2022.3168126
摘要

Graph-based methods are promising approaches for traditional and modern techniques in change detection (CD) applications. Nonetheless, some graph-based approaches omit the existence of useful priors that account for the structure of a scene, and the inter- and intra-relationships between the pixels are analyzed. To address this issue, in this article, we propose a framework for CD based on graph fusion and driven by graph signal smoothness representation. In addition to modifying the graph learning stage, in the proposed model, we apply a Gaussian mixture model for superpixel segmentation (GMMSP) as a downsampling module to reduce the computational cost required to learn the graph of the entire images. We carry out tests on 14 real cases of natural disasters, farming, and construction. The dataset contains homogeneous cases with multispectral (MS) and synthetic aperture radar (SAR) images, along with heterogeneous cases that include MS/SAR images. We compare our approach against probabilistic thresholding, unsupervised learning, deep learning, and graph-based methods. In terms of Cohen’s kappa coefficient, our proposed model based on graph signal smoothness representation outperformed state-of-the-art approaches in ten out of 14 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoan发布了新的文献求助10
刚刚
1秒前
2秒前
虚拟的凌旋完成签到 ,获得积分10
3秒前
刘晓丹发布了新的文献求助10
3秒前
3秒前
桐桐应助跳跃保温杯采纳,获得10
4秒前
小蘑菇应助DingJJ采纳,获得10
4秒前
知行合一发布了新的文献求助10
4秒前
drsquall完成签到,获得积分10
4秒前
4秒前
huilihub完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Kikua发布了新的文献求助30
7秒前
pian完成签到,获得积分10
7秒前
7秒前
7秒前
一車十子寒完成签到,获得积分10
8秒前
发嗲的高跟鞋完成签到 ,获得积分10
8秒前
8秒前
虚拟的凌旋关注了科研通微信公众号
8秒前
王新华完成签到,获得积分10
8秒前
研友_Z3342Z完成签到,获得积分10
9秒前
西西歪应助刘晓丹采纳,获得10
9秒前
YataMisaki发布了新的文献求助10
9秒前
渣渣完成签到 ,获得积分10
9秒前
跳跃保温杯完成签到,获得积分20
9秒前
popcorn完成签到,获得积分10
11秒前
Xx丶完成签到,获得积分10
11秒前
sci来来来发布了新的文献求助10
11秒前
北栀发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
林夕完成签到,获得积分10
13秒前
yyyyyge发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993