亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing

电压 卷积神经网络 铁电性 计算机科学 超短脉冲 材料科学 隧道枢纽 噪音(视频) 光电子学 人工神经网络 电气工程 人工智能 光学 物理 量子隧道 工程类 图像(数学) 电介质 激光器
作者
Zhen Luo,Zijian Wang,Zeyu Guan,Chao Ma,Letian Zhao,Chuanchuan Liu,Haoyang Sun,He Wang,Yue Lin,Xi Jin,Yuewei Yin,Xiaoguang Li
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:13 (1) 被引量:151
标识
DOI:10.1038/s41467-022-28303-x
摘要

The rapid development of neuro-inspired computing demands synaptic devices with ultrafast speed, low power consumption, and multiple non-volatile states, among other features. Here, a high-performance synaptic device is designed and established based on a Ag/PbZr0.52Ti0.48O3 (PZT, (111)-oriented)/Nb:SrTiO3 ferroelectric tunnel junction (FTJ). The advantages of (111)-oriented PZT (~1.2 nm) include its multiple ferroelectric switching dynamics, ultrafine ferroelectric domains, and small coercive voltage. The FTJ shows high-precision (256 states, 8 bits), reproducible (cycle-to-cycle variation, ~2.06%), linear (nonlinearity <1) and symmetric weight updates, with a good endurance of >109 cycles and an ultralow write energy consumption. In particular, manipulations among 150 states are realized under subnanosecond (~630 ps) pulse voltages ≤5 V, and the fastest resistance switching at 300 ps for the FTJs is achieved by voltages <13 V. Based on the experimental performance, the convolutional neural network simulation achieves a high online learning accuracy of ~94.7% for recognizing fashion product images, close to the calculated result of ~95.6% by floating-point-based convolutional neural network software. Interestingly, the FTJ-based neural network is very robust to input image noise, showing potential for practical applications. This work represents an important improvement in FTJs towards building neuro-inspired computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
15秒前
科研通AI6应助懦弱的丹秋采纳,获得10
24秒前
量子星尘发布了新的文献求助10
39秒前
53秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
聪明的云完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
朴素易梦完成签到,获得积分10
2分钟前
小马甲应助John采纳,获得10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
John完成签到,获得积分10
3分钟前
John发布了新的文献求助10
3分钟前
Ji完成签到,获得积分10
4分钟前
阔达白凡完成签到,获得积分10
4分钟前
桥西小河完成签到 ,获得积分10
4分钟前
TongKY完成签到 ,获得积分10
4分钟前
4分钟前
美丽的冰枫完成签到,获得积分10
4分钟前
义气的断秋完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助50
4分钟前
4分钟前
shee发布了新的文献求助10
4分钟前
5分钟前
研友_892kOL完成签到 ,获得积分10
5分钟前
shee完成签到,获得积分20
5分钟前
5分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
003完成签到,获得积分10
6分钟前
科研兵发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
我是老大应助科研兵采纳,获得10
6分钟前
001完成签到,获得积分10
6分钟前
昭荃完成签到 ,获得积分0
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827