New Media Marketing Strategy Optimization in the Catering Industry Based on Deep Machine Learning Algorithms

云计算 主流 互联网 计算机科学 数字营销 营销 新媒体 信息技术 业务 算法 万维网 神学 操作系统 哲学
作者
Zikang Peng
出处
期刊:Journal of Mathematics [Hindawi Limited]
卷期号:2022 (1) 被引量:1
标识
DOI:10.1155/2022/5780549
摘要

With the in‐depth development of new‐generation network technologies such as the Internet, big data, and cloud intelligence, people can obtain massive amounts of information on mobile phones or mobile platforms. The era of unreachable big data has arrived, which raises questions for the development of corporate marketing. With the development of Internet technology, people use mobile terminals for longer and longer periods of time. New media has gradually become the mainstream of the media arena. It has distinctive features such as freedom to find audiences, diverse content forms, and timeliness of information release, which has changed the traditional. The marketing model has a profound impact on the development of the market. This article uses relevant theories, such as new media, marketing, and catering industry marketing strategies, studies the related concepts and characteristics of new media, clarifies the impact of the development of new media on the catering industry and audience groups, and studies the impact of the catering industry from multiple dimensions. Based on the development factors in the new media environment, combined with marketing theory, it puts forward suggestions for catering companies to use new media to carry out marketing planning in product innovation, improving information channels, creating network events and topics, and promoting innovation and health in the catering industry. And a marketing strategy is proposed based on deep machine learning algorithms; including a cloud server, the cloud server communicates with the e‐commerce software platform and the input of physical sales is recorded. The adopted cloud server is connected with data collection, data processing, and communication module. The communication module is connected with a deep machine learning algorithm system; that is, deep machine learning algorithm system is connected with a sales platform in communication. The sales platform is connected with advertising settings and advertising, and the advertising is electrically connected with an algorithm of advertising delivery methods. Advertisement delivery method algorithm communication is connected to the cloud server. This article uses deep machine learning algorithms to process the data information to make the data information easy to view and clear. The advertisement delivery method algorithm calculates the best way of advertising and then calculates the advertisement to deliver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助shikai采纳,获得10
1秒前
liyi发布了新的文献求助10
1秒前
heiyi完成签到,获得积分10
2秒前
3秒前
球球应助学术蝗虫采纳,获得10
3秒前
成就猫咪完成签到,获得积分10
5秒前
Xiongcf发布了新的文献求助10
5秒前
5秒前
9秒前
诗图应助lsh采纳,获得10
9秒前
10秒前
可爱的函函应助馒头采纳,获得10
11秒前
科研混混发布了新的文献求助30
12秒前
13秒前
汉堡包应助海海采纳,获得10
13秒前
14秒前
诸葛藏藏发布了新的文献求助10
14秒前
Hello应助Elijah采纳,获得10
17秒前
18秒前
阿德发布了新的文献求助10
18秒前
19秒前
chezi完成签到,获得积分10
20秒前
苹果书兰完成签到 ,获得积分10
20秒前
酷炫山柳完成签到,获得积分10
20秒前
KCC发布了新的文献求助10
21秒前
海海完成签到,获得积分10
21秒前
海海发布了新的文献求助10
24秒前
24秒前
zhaolihua完成签到,获得积分10
24秒前
chancellery发布了新的文献求助10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
prosperp应助科研通管家采纳,获得30
26秒前
江坷发布了新的文献求助30
26秒前
丘比特应助科研通管家采纳,获得30
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
sissiarno应助科研通管家采纳,获得100
27秒前
27秒前
华仔应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293187
求助须知:如何正确求助?哪些是违规求助? 2929391
关于积分的说明 8441372
捐赠科研通 2601499
什么是DOI,文献DOI怎么找? 1419936
科研通“疑难数据库(出版商)”最低求助积分说明 660452
邀请新用户注册赠送积分活动 643053