Novel acetylation-related gene signatures for predicting the prognosis of patients with colorectal cancer

列线图 乙酰化 肿瘤科 结直肠癌 表观遗传学 基因 内科学 医学 生物 癌症研究 癌症 遗传学
作者
Zhuang Jing,Feng Ziwang,Wu Yinhang,Zhou Yani,Jian Chu,Jingwen Wu,Shuwen Han
出处
期刊:Human Cell [Springer Science+Business Media]
卷期号:35 (4): 1159-1173 被引量:7
标识
DOI:10.1007/s13577-022-00720-6
摘要

Histone acetylation may affect the tumorigenesis and prognosis of colorectal cancer (CRC). However, there is still a lack of studies exploring the effect of acetylation-related genes on the prognosis of CRC. To explore the role of acetylation-related genes in CRC prognosis using bioinformatics strategies, the expression data and survival information of CRC patients were collected from the Gene Expression Omnibus. The Molecular Signatures Database was used to select acetylation-related genes. Univariate and least absolute shrinkage and selection operator regression analyses were used to screen prognostic genes. Kaplan-Meier curves were plotted for survival analysis. Cibersort and pRRophetics were used to analyze immune infiltration and predict drug sensitivity, respectively. By implementing independent prognostic factors, a nomogram model was constructed. The result showed that a total of 48 prognostic genes which screened from the acetylation-related gene set were mainly enriched in ABC transporters and acetylation/deacetylation-related pathways. Three gene signatures (SDR16C5, MEAF6, and SOX4) were further defined, and a prognostic model was constructed that showed high sensitivity and specificity for predicting CRC prognosis in both training and validation cohorts. Patients with different prognostic risks also presented differential expression of gene signatures, infiltration of activated CD4 memory T cells, and drug sensitivity to bicalutamide, gefitinib, Lenalidomide, and imatinib. The nomogram suggested the potential of a risk score-based model in predicting 1- and 2-year survival in patients with CRC. In conclusion, we proposed three gene signatures from an acetylation-related gene set as potential targets for epigenetic therapy and constructed a prognostic model for CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Akim应助随缘采纳,获得10
2秒前
Orange应助炙热雅琴采纳,获得10
3秒前
3秒前
华仔应助舒适大山采纳,获得10
4秒前
UU应助xiaoyan采纳,获得10
4秒前
8秒前
积极乐安发布了新的文献求助10
9秒前
劲秉应助zzz采纳,获得50
9秒前
mmr完成签到 ,获得积分10
10秒前
缥缈耷完成签到,获得积分10
10秒前
传奇3应助DOCTORLI采纳,获得10
10秒前
13秒前
13秒前
14秒前
追寻的山晴完成签到,获得积分10
15秒前
zhuang发布了新的文献求助10
15秒前
随缘发布了新的文献求助10
17秒前
宋宋发布了新的文献求助10
17秒前
doctor_loong发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
小刘一定能读C9博完成签到 ,获得积分10
20秒前
昏睡的蟠桃应助CBWKEYANTONG123采纳,获得200
20秒前
听风轻语发布了新的文献求助10
22秒前
畅快夏蓉完成签到 ,获得积分10
22秒前
xiaoyan发布了新的文献求助10
22秒前
天天快乐应助Tioner采纳,获得10
23秒前
DOCTORLI发布了新的文献求助10
23秒前
24秒前
snowwwwwwwwfox完成签到,获得积分10
24秒前
orange完成签到,获得积分10
24秒前
27秒前
哈哈哈不忙吗完成签到,获得积分10
27秒前
等待盼雁完成签到,获得积分10
28秒前
天天快乐应助敏感的惜文采纳,获得10
29秒前
29秒前
DOCTORLI完成签到,获得积分10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730609
求助须知:如何正确求助?哪些是违规求助? 3275255
关于积分的说明 9991470
捐赠科研通 2990896
什么是DOI,文献DOI怎么找? 1641247
邀请新用户注册赠送积分活动 779636
科研通“疑难数据库(出版商)”最低求助积分说明 748331