清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Supervised Machine Learning for Predicting Length of Stay After Lumbar Arthrodesis: A Comprehensive Artificial Intelligence Approach

医学 腰椎 机器学习 关节融合术 人工智能 算法 外科 计算机科学 病理 替代医学
作者
Christine M. Etzel,Ashwin Veeramani,Andrew S. Zhang,Christopher L. McDonald,Kevin J. DiSilvestro,Eric M. Cohen,Alan H. Daniels
标识
DOI:10.5435/jaaos-d-21-00241
摘要

Few studies have evaluated the utility of machine learning techniques to predict and classify outcomes, such as length of stay (LOS), for lumbar fusion patients. Six supervised machine learning algorithms may be able to predict and classify whether a patient will experience a short or long hospital LOS after lumbar fusion surgery with a high degree of accuracy.Data were obtained from the National Surgical Quality Improvement Program between 2009 and 2018. Demographic and comorbidity information was collected for patients who underwent anterior, anterolateral, or lateral transverse process technique arthrodesis procedure; anterior lumbar interbody fusion (ALIF); posterior, posterolateral, or lateral transverse process technique arthrodesis procedure; posterior lumbar interbody fusion/transforaminal lumbar interbody fusion (PLIF/TLIF); and posterior fusion procedure posterior spine fusion (PSF). Machine learning algorithmic analyses were done with the scikit-learn package in Python on a high-performance computing cluster. In the total sample, 85% of patients were used for training the models, whereas the remaining patients were used for testing the models. C-statistic area under the curve and prediction accuracy (PA) were calculated for each of the models to determine their accuracy in correctly classifying the test cases.In total, 12,915 ALIF patients, 27,212 PLIF/TLIF patients, and 23,406 PSF patients were included in the algorithmic analyses. The patient factors most strongly associated with LOS were sex, ethnicity, dialysis, and disseminated cancer. The machine learning algorithms yielded area under the curve values of between 0.673 and 0.752 (PA: 69.6% to 80.1%) for ALIF, 0.673 and 0.729 (PA: 66.0% to 81.3%) for PLIF/TLIF, and 0.698 and 0.749 (PA: 69.9% to 80.4%) for PSF.Machine learning classification algorithms were able to accurately predict long LOS for ALIF, PLIF/TLIF, and PSF patients. Supervised machine learning algorithms may be useful in clinical and administrative settings. These data may additionally help inform predictive analytic models and assist in setting patient expectations.Diagnostic study, retrospective cohort study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyj完成签到 ,获得积分10
刚刚
巫巫巫巫巫完成签到 ,获得积分10
11秒前
aniu完成签到,获得积分10
33秒前
房天川完成签到 ,获得积分0
52秒前
1分钟前
X519664508完成签到,获得积分0
1分钟前
潇潇完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浚稚完成签到 ,获得积分10
2分钟前
Solomon完成签到 ,获得积分0
2分钟前
2分钟前
Lin完成签到 ,获得积分10
3分钟前
3分钟前
荣不凡发布了新的文献求助10
3分钟前
wangye完成签到 ,获得积分10
3分钟前
a46539749完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
lovexa完成签到,获得积分10
3分钟前
凡高爱自由完成签到,获得积分10
4分钟前
小科完成签到,获得积分10
4分钟前
稳重傲晴完成签到 ,获得积分10
4分钟前
yujie完成签到 ,获得积分10
4分钟前
Wilson完成签到 ,获得积分10
4分钟前
4分钟前
gobi完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
Shonso发布了新的文献求助30
6分钟前
无花果应助乐乐万岁采纳,获得10
6分钟前
小西完成签到 ,获得积分10
6分钟前
想睡觉的小笼包完成签到 ,获得积分10
6分钟前
跳跃的鹏飞完成签到 ,获得积分10
6分钟前
donghai完成签到,获得积分10
6分钟前
6分钟前
donghai发布了新的文献求助10
6分钟前
baobeikk完成签到 ,获得积分10
6分钟前
稻子完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434823
求助须知:如何正确求助?哪些是违规求助? 3032141
关于积分的说明 8944331
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492156
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862