A Review of Genetic Algorithm Approaches for Wildfire Spread Prediction Calibration

校准 遗传算法 计算机科学 集合(抽象数据类型) 不确定性传播 风速 算法 数据挖掘 环境科学 机器学习 气象学 地理 数学 统计 程序设计语言
作者
Jorge Costa Pereira,Jérôme Mendes,Jorge S. S. Júnior,Carlos Viegas,João Paulo
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (3): 300-300 被引量:16
标识
DOI:10.3390/math10030300
摘要

Wildfires are complex natural events that cause significant environmental and property damage, as well as human losses, every year throughout the world. In order to aid in their management and mitigate their impact, efforts have been directed towards developing decision support systems that can predict wildfire propagation. Most of the available tools for wildfire spread prediction are based on the Rothermel model that, apart from being relatively complex and computing demanding, depends on several input parameters concerning the local fuels, wind or topography, which are difficult to obtain with a minimum resolution and degree of accuracy. These factors are leading causes for the deviations between the predicted fire propagation and the real fire propagation. In this sense, this paper conducts a literature review on optimization methodologies for wildfire spread prediction based on the use of evolutionary algorithms for input parameter set calibration. In the present literature review, it was observed that the current literature on wildfire spread prediction calibration is mostly focused on methodologies based on genetic algorithms (GAs). Inline with this trend, this paper presents an application of genetic algorithms for the calibration of a set of the Rothermel model’s input parameters, namely: surface-area-to-volume ratio, fuel bed depth, fuel moisture, and midflame wind speed. The GA was validated on 37 real datasets obtained through experimental prescribed fires in controlled conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Serenity采纳,获得10
1秒前
无敌小帅发布了新的文献求助30
1秒前
香蕉觅云应助lvsehx采纳,获得10
1秒前
对苏完成签到,获得积分10
3秒前
3秒前
march应助Yellue采纳,获得20
3秒前
4秒前
心灵美复天完成签到,获得积分10
4秒前
Tan3837完成签到,获得积分10
5秒前
冷酷仙境的羊男完成签到 ,获得积分10
5秒前
5秒前
活泼一凤完成签到,获得积分10
5秒前
5秒前
6秒前
如初发布了新的文献求助10
6秒前
bkagyin应助小妮采纳,获得10
6秒前
肚子圆圆的完成签到 ,获得积分10
6秒前
程星宇发布了新的文献求助10
7秒前
bkagyin应助315947采纳,获得30
7秒前
烂漫的汲完成签到,获得积分10
7秒前
8秒前
精明的橘子完成签到 ,获得积分10
8秒前
啾啾完成签到,获得积分10
8秒前
ciooli完成签到,获得积分10
8秒前
xia_完成签到,获得积分10
8秒前
研友_8Raw2Z发布了新的文献求助10
8秒前
kk发布了新的文献求助10
9秒前
9秒前
wucl1990发布了新的文献求助10
9秒前
苹果发夹完成签到 ,获得积分10
9秒前
Tina应助qin采纳,获得10
9秒前
令人秃头完成签到 ,获得积分10
10秒前
ciooli发布了新的文献求助10
10秒前
10秒前
xyzlancet发布了新的文献求助10
11秒前
小蘑菇应助崔博采纳,获得10
11秒前
沉淀体育生完成签到,获得积分10
11秒前
火龙果发布了新的文献求助10
12秒前
12秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620