A Review of Genetic Algorithm Approaches for Wildfire Spread Prediction Calibration

校准 遗传算法 计算机科学 集合(抽象数据类型) 不确定性传播 风速 算法 数据挖掘 环境科学 机器学习 气象学 地理 数学 统计 程序设计语言
作者
Jorge Costa Pereira,Jérôme Mendes,Jorge S. S. Júnior,Carlos Viegas,João Paulo
出处
期刊:Mathematics [MDPI AG]
卷期号:10 (3): 300-300 被引量:16
标识
DOI:10.3390/math10030300
摘要

Wildfires are complex natural events that cause significant environmental and property damage, as well as human losses, every year throughout the world. In order to aid in their management and mitigate their impact, efforts have been directed towards developing decision support systems that can predict wildfire propagation. Most of the available tools for wildfire spread prediction are based on the Rothermel model that, apart from being relatively complex and computing demanding, depends on several input parameters concerning the local fuels, wind or topography, which are difficult to obtain with a minimum resolution and degree of accuracy. These factors are leading causes for the deviations between the predicted fire propagation and the real fire propagation. In this sense, this paper conducts a literature review on optimization methodologies for wildfire spread prediction based on the use of evolutionary algorithms for input parameter set calibration. In the present literature review, it was observed that the current literature on wildfire spread prediction calibration is mostly focused on methodologies based on genetic algorithms (GAs). Inline with this trend, this paper presents an application of genetic algorithms for the calibration of a set of the Rothermel model’s input parameters, namely: surface-area-to-volume ratio, fuel bed depth, fuel moisture, and midflame wind speed. The GA was validated on 37 real datasets obtained through experimental prescribed fires in controlled conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wbb发布了新的文献求助10
3秒前
3秒前
陈住气发布了新的文献求助30
3秒前
8秒前
Fjj完成签到,获得积分20
10秒前
不想取名字完成签到,获得积分10
11秒前
糖糖爱干饭完成签到 ,获得积分10
11秒前
悦悦完成签到,获得积分10
11秒前
黑暗精灵完成签到,获得积分10
11秒前
FashionBoy应助三水采纳,获得10
11秒前
heqing完成签到,获得积分10
12秒前
13秒前
wbhou完成签到 ,获得积分10
14秒前
16秒前
wbb完成签到,获得积分20
18秒前
18秒前
天天快乐应助ppppp采纳,获得10
18秒前
共享精神应助god采纳,获得30
20秒前
22秒前
knn发布了新的文献求助20
22秒前
LL发布了新的文献求助10
22秒前
susu完成签到,获得积分20
25秒前
Hello应助zjz采纳,获得10
26秒前
26秒前
adkdad完成签到 ,获得积分10
29秒前
完美世界应助留荷听雨采纳,获得10
29秒前
科研通AI2S应助Ann采纳,获得10
29秒前
小小想想完成签到,获得积分10
30秒前
ppppp发布了新的文献求助10
32秒前
34秒前
34秒前
落后的瑾瑜完成签到,获得积分10
37秒前
37秒前
三水发布了新的文献求助10
39秒前
1874发布了新的文献求助10
40秒前
小蘑菇应助gdh采纳,获得10
43秒前
慕青应助李白采纳,获得10
44秒前
谨慎的寒梦完成签到 ,获得积分10
44秒前
45秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043