小胶质细胞
化学
MTT法
免疫印迹
神经炎症
炎症
分子生物学
细胞凋亡
免疫学
生物
生物化学
基因
作者
Lin Liu,Tingting Zhou,Tao Li,Zhanhua Liang,Xiaoguang Luo
标识
DOI:10.1016/j.bbr.2022.113923
摘要
Parkinson's disease (PD) is a prevailing neurodegenerative disorder. This study discussed the mechanism of lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) on inflammatory responses in PD. With healthy male C57BL/6 mice (8-10 weeks) and BV2 microglia as study subjects, we established PD models in vivo/in vitro by injection of 1-methyl-4-phenyl-2, 3, 6-tetrahydropyridine (MPTP) for 4 weeks and treatment of lipopolysaccharide (LPS) for 24 h, respectively. DLX6-AS1 expression in PD mice and BV2 microglia was examined using reverse transcription quantitative-polymerase chain reaction and then down-regulated via stereotaxic catheter injection or cell transfection to evaluate its effect on neurological function. Meanwhile, the cell number of TH+ /Caspase3 + /IBA1 + in substantia nigra, cell viability, and apoptosis rate of BV2 microglia, inflammatory levels, and NLR family pyrin domain containing 3 (NLRP3) inflammasome were determined using immunohistochemistry, MTT assay, flow cytometry, ELIZA assay, and Western blot. The binding relationship between miR-223-3p and DLX6-AS1/Neuropilin-1 (NRP1) was verified by dual-luciferase assay and RNA immunoprecipitation assay. After down-regulation of DLX6-AS1, we down-regulated/overexpressed miR-223-3p/NRP1 levels in BV2 microglia. DLX6-AS1 was overexpressed in PD mice. Silencing DLX6-AS1 improved neurological function and alleviated microglial inflammation in PD mice. Specifically, the latency of mice falling from the rotating rod was longer, and the latency of climbing rod test was shorter; TH+ cells increased, while Caspase3 + /IBA1 + cells decreased; the levels of inflammatory were lowered. Silencing DLX6-AS1 inhibited LPS-induced inflammation of BV2 microglia. DLX6-AS1 acted as the ceRNA of miR-223-3p to promote NRP1. Down-regulation of miR-223-3p or overexpression of NRP1 partially annulled the effect of silencing DLX6-AS1 on BV2 microglial inflammation. Overall, DLX6-AS1 promotes the microglial inflammatory response in PD through the ceRNA mechanism of miR-223-3p/NRP1.
科研通智能强力驱动
Strongly Powered by AbleSci AI