亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate Range-Free Localization for Anisotropic Wireless Sensor Networks

无线传感器网络 计算机科学 航程(航空) 地点 公制(单位) 算法 职位(财务) 计算机网络 财务 运营管理 语言学 哲学 复合材料 经济 材料科学
作者
Shigeng Zhang,Xuan Liu,Jianxin Wang,Jiannong Cao,Geyong Min
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
卷期号:11 (3): 1-28 被引量:71
标识
DOI:10.1145/2746343
摘要

Position information plays a pivotal role in wireless sensor network (WSN) applications and protocol/algorithm design. In recent years, range-free localization algorithms have drawn much research attention due to their low cost and applicability to large-scale WSNs. However, the application of range-free localization algorithms is restricted because of their dramatic accuracy degradation in practical anisotropic WSNs, which is mainly caused by large error of distance estimation. Distance estimation in the existing range-free algorithms usually relies on a unified per hop length (PHL) metric between nodes. But the PHL between different nodes might be greatly different in anisotropic WSNs, resulting in large error in distance estimation. We find that, although the PHL between different nodes might be greatly different, it exhibits significant locality ; that is, nearby nodes share a similar PHL to anchors that know their positions in advance. Based on the locality of the PHL, a novel distance estimation approach is proposed in this article. Theoretical analyses show that the error of distance estimation in the proposed approach is only one-fourth of that in the state-of-the-art pattern-driven scheme (PDS). An anchor selection algorithm is also devised to further improve localization accuracy by mitigating the negative effects from the anchors that are poorly distributed in geometry. By combining the locality-based distance estimation and the anchor selection, a range-free localization algorithm named <underline>S</underline>elective <underline>M</underline>ultilateration (SM) is proposed. Simulation results demonstrate that SM achieves localization accuracy higher than 0.3 r , where r is the communication radius of nodes. Compared to the state-of-the-art solution, SM improves the distance estimation accuracy by up to 57% and improves localization accuracy by up to 52% consequently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
曲线发布了新的文献求助10
13秒前
缓慢逍遥完成签到 ,获得积分10
17秒前
赘婿应助Ade107采纳,获得10
17秒前
科研启动发布了新的文献求助10
20秒前
27秒前
lele发布了新的文献求助10
31秒前
曲线完成签到,获得积分10
46秒前
科研通AI6应助zhdhh采纳,获得10
51秒前
无奈的靖仇完成签到,获得积分10
53秒前
55秒前
1分钟前
呼延水云发布了新的文献求助10
1分钟前
要减肥的胖子应助周周采纳,获得10
1分钟前
1分钟前
科研通AI6应助George采纳,获得10
1分钟前
斯文败类应助Aurora采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
2分钟前
Ade107发布了新的文献求助10
2分钟前
2分钟前
宓广缘完成签到 ,获得积分10
2分钟前
应寒年完成签到 ,获得积分10
2分钟前
Ava应助靓丽的珊珊采纳,获得10
2分钟前
2分钟前
2分钟前
carols发布了新的文献求助10
2分钟前
小马甲应助Ade107采纳,获得10
2分钟前
Thi发布了新的文献求助10
2分钟前
靓丽衫完成签到 ,获得积分10
2分钟前
qiuzhiri完成签到,获得积分10
2分钟前
小二郎应助George采纳,获得10
2分钟前
2分钟前
2分钟前
在水一方应助qiuzhiri采纳,获得10
2分钟前
Nightfall发布了新的文献求助10
2分钟前
善学以致用应助LALA采纳,获得10
2分钟前
包容远山完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425