Accurate Range-Free Localization for Anisotropic Wireless Sensor Networks

无线传感器网络 计算机科学 航程(航空) 地点 公制(单位) 算法 职位(财务) 计算机网络 语言学 哲学 材料科学 运营管理 财务 经济 复合材料
作者
Shigeng Zhang,Xuan Liu,Jianxin Wang,Jiannong Cao,Geyong Min
出处
期刊:ACM Transactions on Sensor Networks [Association for Computing Machinery]
卷期号:11 (3): 1-28 被引量:71
标识
DOI:10.1145/2746343
摘要

Position information plays a pivotal role in wireless sensor network (WSN) applications and protocol/algorithm design. In recent years, range-free localization algorithms have drawn much research attention due to their low cost and applicability to large-scale WSNs. However, the application of range-free localization algorithms is restricted because of their dramatic accuracy degradation in practical anisotropic WSNs, which is mainly caused by large error of distance estimation. Distance estimation in the existing range-free algorithms usually relies on a unified per hop length (PHL) metric between nodes. But the PHL between different nodes might be greatly different in anisotropic WSNs, resulting in large error in distance estimation. We find that, although the PHL between different nodes might be greatly different, it exhibits significant locality ; that is, nearby nodes share a similar PHL to anchors that know their positions in advance. Based on the locality of the PHL, a novel distance estimation approach is proposed in this article. Theoretical analyses show that the error of distance estimation in the proposed approach is only one-fourth of that in the state-of-the-art pattern-driven scheme (PDS). An anchor selection algorithm is also devised to further improve localization accuracy by mitigating the negative effects from the anchors that are poorly distributed in geometry. By combining the locality-based distance estimation and the anchor selection, a range-free localization algorithm named <underline>S</underline>elective <underline>M</underline>ultilateration (SM) is proposed. Simulation results demonstrate that SM achieves localization accuracy higher than 0.3 r , where r is the communication radius of nodes. Compared to the state-of-the-art solution, SM improves the distance estimation accuracy by up to 57% and improves localization accuracy by up to 52% consequently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助卓哥采纳,获得10
刚刚
mysci完成签到,获得积分10
3秒前
4秒前
Quzhengkai发布了新的文献求助10
5秒前
5秒前
6秒前
落寞晓灵完成签到,获得积分10
6秒前
ORAzzz应助翠翠采纳,获得20
7秒前
zoe完成签到,获得积分10
7秒前
习习应助学术小白采纳,获得10
7秒前
8秒前
9秒前
tianny关注了科研通微信公众号
10秒前
10秒前
CO2发布了新的文献求助10
10秒前
桐桐应助zhangscience采纳,获得10
11秒前
求助发布了新的文献求助10
12秒前
buno应助zoe采纳,获得10
13秒前
junzilan发布了新的文献求助10
13秒前
13秒前
细品岁月完成签到 ,获得积分10
13秒前
细心书蕾完成签到 ,获得积分10
14秒前
无花果应助l11x29采纳,获得10
16秒前
16秒前
老詹头发布了新的文献求助10
16秒前
思源应助叫滚滚采纳,获得10
17秒前
18秒前
刘歌完成签到 ,获得积分10
18秒前
阿巡完成签到,获得积分10
18秒前
Chen完成签到,获得积分10
20秒前
LSH970829发布了新的文献求助10
20秒前
哈哈哈完成签到 ,获得积分10
21秒前
汤姆完成签到,获得积分10
21秒前
23秒前
23秒前
翠翠完成签到,获得积分10
24秒前
24秒前
LSH970829完成签到,获得积分10
25秒前
Lyg完成签到,获得积分20
26秒前
坚强的樱发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808