High-Utilization, High-Flexibility Depth-First CNN Coprocessor for Image Pixel Processing on FPGA

卷积神经网络 嵌入式系统 硬件加速 图像处理 并行计算 硬件体系结构 人工智能 深度学习 管道(软件)
作者
Steven Colleman,Marian Verhelst
出处
期刊:IEEE Transactions on Very Large Scale Integration Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 461-471 被引量:3
标识
DOI:10.1109/tvlsi.2020.3046125
摘要

Recently, CNNs are increasingly exploited for pixel processing tasks, such as denoising, which opens up new challenges due to the increased activation and operation count. This article presents a CNN coprocessor architecture to solve these challenges on field-programmable gate array (FPGA) through four main contributions. First, the I/O communication between the host processor and the FPGA is reduced to a minimum using a depth-first (DF) principle. Three new DF approaches are presented. Second, to ensure high throughput, the increased parallelization opportunities of the proposed line-based DF operation are analyzed. Third, introducing programmability to the compute array is introduced to enable a broad deployment while maintaining high utilization of the available multipliers digital signal processings (DSPs), independently of the kernel dimensions and without control of the host processor. This is in contrast with many state-of-the-art FPGA implementations, focusing on only one algorithm and/or one kernel topology. Fourth, a model is built to investigate the influence of architecture parameters and show the benefits of DF. The scalable design can be deployed on a wide range of FPGAs, maintaining 78%–93% DSP utilization across all algorithms (denoising, optical flow, depth estimation, segmentation, and super-resolution) and FPGA platforms. Up to 695 GOPS is achieved on a Zynq XCZU9EG board, matching state-of-the-art performance with a more flexible design. The throughput is compared with other pixel processing architectures on FPGA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助阿辉采纳,获得10
1秒前
cui发布了新的文献求助10
1秒前
quasar完成签到,获得积分10
1秒前
耍酷天寿发布了新的文献求助10
1秒前
hyee1关注了科研通微信公众号
1秒前
完美世界应助jzt12138采纳,获得10
1秒前
Hello应助XT采纳,获得10
2秒前
2秒前
kingwill举报小齐爱科研求助涉嫌违规
2秒前
NN发布了新的文献求助10
3秒前
淡然凤完成签到,获得积分10
3秒前
大模型应助小比熊采纳,获得10
3秒前
情怀应助严昌采纳,获得10
3秒前
4秒前
美好初晴发布了新的文献求助10
5秒前
我要发一刊完成签到 ,获得积分10
5秒前
小慧儿完成签到 ,获得积分10
6秒前
6秒前
Mico发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
6666应助小白采纳,获得10
7秒前
田様应助谨慎的寒松采纳,获得10
8秒前
科目三应助谨慎的寒松采纳,获得10
8秒前
丘比特应助谨慎的寒松采纳,获得30
8秒前
情怀应助谨慎的寒松采纳,获得10
9秒前
Orange应助谨慎的寒松采纳,获得10
9秒前
酷波er应助谨慎的寒松采纳,获得10
9秒前
9秒前
所所应助谨慎的寒松采纳,获得10
9秒前
情怀应助谨慎的寒松采纳,获得10
9秒前
上官若男应助谨慎的寒松采纳,获得10
9秒前
科研通AI6.1应助翟翟采纳,获得10
9秒前
科研通AI6.1应助翟翟采纳,获得10
9秒前
滕祥给滕祥的求助进行了留言
10秒前
10秒前
killer发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108