High-Utilization, High-Flexibility Depth-First CNN Coprocessor for Image Pixel Processing on FPGA

卷积神经网络 嵌入式系统 硬件加速 图像处理 并行计算 硬件体系结构 人工智能 深度学习 管道(软件)
作者
Steven Colleman,Marian Verhelst
出处
期刊:IEEE Transactions on Very Large Scale Integration Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 461-471 被引量:3
标识
DOI:10.1109/tvlsi.2020.3046125
摘要

Recently, CNNs are increasingly exploited for pixel processing tasks, such as denoising, which opens up new challenges due to the increased activation and operation count. This article presents a CNN coprocessor architecture to solve these challenges on field-programmable gate array (FPGA) through four main contributions. First, the I/O communication between the host processor and the FPGA is reduced to a minimum using a depth-first (DF) principle. Three new DF approaches are presented. Second, to ensure high throughput, the increased parallelization opportunities of the proposed line-based DF operation are analyzed. Third, introducing programmability to the compute array is introduced to enable a broad deployment while maintaining high utilization of the available multipliers digital signal processings (DSPs), independently of the kernel dimensions and without control of the host processor. This is in contrast with many state-of-the-art FPGA implementations, focusing on only one algorithm and/or one kernel topology. Fourth, a model is built to investigate the influence of architecture parameters and show the benefits of DF. The scalable design can be deployed on a wide range of FPGAs, maintaining 78%–93% DSP utilization across all algorithms (denoising, optical flow, depth estimation, segmentation, and super-resolution) and FPGA platforms. Up to 695 GOPS is achieved on a Zynq XCZU9EG board, matching state-of-the-art performance with a more flexible design. The throughput is compared with other pixel processing architectures on FPGA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啤酒半斤发布了新的文献求助200
刚刚
2秒前
2秒前
bin发布了新的文献求助100
2秒前
鲤鱼依白完成签到 ,获得积分10
2秒前
领导范儿应助十四吉采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
任贱贱完成签到,获得积分20
5秒前
小马甲应助言木禾采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
简单喀秋莎完成签到,获得积分10
8秒前
8秒前
CodeCraft应助菠萝披萨采纳,获得10
8秒前
风趣绿竹完成签到,获得积分10
9秒前
傲娇的秋莲完成签到,获得积分20
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
小明发布了新的文献求助10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
天天快乐应助科研通管家采纳,获得30
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
10秒前
浮游应助科研通管家采纳,获得10
10秒前
无花果应助einspringen采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
yu发布了新的文献求助30
10秒前
10秒前
11秒前
Levan完成签到,获得积分10
11秒前
bamboo应助科研通管家采纳,获得20
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
求助人员应助科研通管家采纳,获得30
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
蜉蝣完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667