High-Utilization, High-Flexibility Depth-First CNN Coprocessor for Image Pixel Processing on FPGA

卷积神经网络 嵌入式系统 硬件加速 图像处理 并行计算 硬件体系结构 人工智能 深度学习 管道(软件)
作者
Steven Colleman,Marian Verhelst
出处
期刊:IEEE Transactions on Very Large Scale Integration Systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 461-471 被引量:3
标识
DOI:10.1109/tvlsi.2020.3046125
摘要

Recently, CNNs are increasingly exploited for pixel processing tasks, such as denoising, which opens up new challenges due to the increased activation and operation count. This article presents a CNN coprocessor architecture to solve these challenges on field-programmable gate array (FPGA) through four main contributions. First, the I/O communication between the host processor and the FPGA is reduced to a minimum using a depth-first (DF) principle. Three new DF approaches are presented. Second, to ensure high throughput, the increased parallelization opportunities of the proposed line-based DF operation are analyzed. Third, introducing programmability to the compute array is introduced to enable a broad deployment while maintaining high utilization of the available multipliers digital signal processings (DSPs), independently of the kernel dimensions and without control of the host processor. This is in contrast with many state-of-the-art FPGA implementations, focusing on only one algorithm and/or one kernel topology. Fourth, a model is built to investigate the influence of architecture parameters and show the benefits of DF. The scalable design can be deployed on a wide range of FPGAs, maintaining 78%–93% DSP utilization across all algorithms (denoising, optical flow, depth estimation, segmentation, and super-resolution) and FPGA platforms. Up to 695 GOPS is achieved on a Zynq XCZU9EG board, matching state-of-the-art performance with a more flexible design. The throughput is compared with other pixel processing architectures on FPGA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moyuqilin完成签到,获得积分20
刚刚
彩虹捕手发布了新的文献求助10
刚刚
LLL发布了新的文献求助10
刚刚
刚刚
lili发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
wsx完成签到,获得积分10
2秒前
2秒前
动听的雪卉完成签到,获得积分10
2秒前
Rose发布了新的文献求助10
2秒前
赘婿应助炙热猎豹采纳,获得10
3秒前
周志友完成签到,获得积分10
3秒前
Duuuu发布了新的文献求助10
3秒前
4秒前
羊yang发布了新的文献求助10
4秒前
嫁接诺贝尔应助lili采纳,获得10
4秒前
汉堡包应助lili采纳,获得10
4秒前
酷波er应助lili采纳,获得10
4秒前
此晴可待发布了新的文献求助10
5秒前
5秒前
orixero应助小美采纳,获得10
5秒前
科研通AI6应助zyw采纳,获得10
5秒前
6秒前
殷勤的天亦完成签到,获得积分20
6秒前
澄桦完成签到,获得积分10
6秒前
6秒前
务实源智发布了新的文献求助10
6秒前
6秒前
6秒前
机灵又蓝完成签到 ,获得积分10
6秒前
上学威龙发布了新的文献求助10
7秒前
天天快乐应助estrale采纳,获得10
7秒前
July发布了新的文献求助10
7秒前
新晋牛马完成签到,获得积分10
7秒前
MiMa完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721