On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications

本征函数 数学 传输(电信) 导电体 边值问题 数学分析 边界(拓扑) 几何学 特征向量 计算机科学 电信 物理 量子力学
作者
Huaian Diao,Xinlin Cao,Hongyu Liu
出处
期刊:Communications in Partial Differential Equations [Informa]
卷期号:46 (4): 630-679 被引量:48
标识
DOI:10.1080/03605302.2020.1857397
摘要

This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. It is shown in two scenarios that the interior transmission eigenfunction must be locally vanishing near a corner of the domain with an interior angle less than π. We significantly extend and generalize those results in several aspects. First, we consider the conductive transmission eigenfunctions which include the interior transmission eigenfunctions as a special case. The geometric structures established for the conductive transmission eigenfunctions in this paper include the results in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 as a special case. Second, the vanishing property of the conductive transmission eigenfunctions is established for any corner as long as its interior angle is not π when the conductive transmission eigenfunctions satisfy certain Herglotz functions approximation properties. That means, as long as the corner singularity is not degenerate, the vanishing property holds if the underlying conductive transmission eigenfunctions can be approximated by a sequence of Herglotz functions under mild approximation rates. Third, the regularity requirements on the interior transmission eigenfunctions in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 are significantly relaxed in the present study for the conductive transmission eigenfunctions. In order to establish the geometric properties for the conductive transmission eigenfunctions, we develop technically new methods and the corresponding analysis is much more complicated than that in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. Finally, as an interesting and practical application of the obtained geometric results, we establish a unique recovery result for the inverse problem associated with the transverse electromagnetic scattering by a single far-field measurement in simultaneously determining a polygonal conductive obstacle and its surface conductive parameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LL发布了新的文献求助10
1秒前
李爱国应助无声瀑布采纳,获得10
1秒前
2秒前
3秒前
3秒前
4秒前
6秒前
6秒前
gao发布了新的文献求助10
6秒前
一直很安静完成签到,获得积分10
7秒前
FD完成签到 ,获得积分10
7秒前
猫樊发布了新的文献求助15
8秒前
8秒前
传奇3应助简意采纳,获得10
10秒前
罗小罗完成签到 ,获得积分10
11秒前
11秒前
Meredith完成签到,获得积分10
12秒前
努力发布了新的文献求助10
12秒前
bean完成签到,获得积分10
12秒前
Lucas应助迷路的友卉采纳,获得10
12秒前
失眠双双发布了新的文献求助30
13秒前
缥缈傥发布了新的文献求助10
13秒前
ty完成签到 ,获得积分10
14秒前
萧七七发布了新的文献求助10
15秒前
nacheol完成签到 ,获得积分10
16秒前
19秒前
小二郎应助hyw采纳,获得10
20秒前
Hello应助我要7甜瓜采纳,获得10
21秒前
柔弱小懒虫完成签到,获得积分10
22秒前
22秒前
23秒前
SciGPT应助勤劳的花卷采纳,获得10
23秒前
zafan发布了新的文献求助10
23秒前
OK先生发布了新的文献求助10
24秒前
24秒前
24秒前
bean发布了新的文献求助10
25秒前
25秒前
科研小菜鸡完成签到,获得积分20
26秒前
黄丽完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301723
求助须知:如何正确求助?哪些是违规求助? 2936289
关于积分的说明 8477167
捐赠科研通 2610018
什么是DOI,文献DOI怎么找? 1424990
科研通“疑难数据库(出版商)”最低求助积分说明 662239
邀请新用户注册赠送积分活动 646342