On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications

本征函数 数学 传输(电信) 导电体 边值问题 数学分析 边界(拓扑) 几何学 特征向量 计算机科学 电信 物理 量子力学
作者
Huaian Diao,Xinlin Cao,Hongyu Liu
出处
期刊:Communications in Partial Differential Equations [Taylor & Francis]
卷期号:46 (4): 630-679 被引量:48
标识
DOI:10.1080/03605302.2020.1857397
摘要

This paper is concerned with the intrinsic geometric structures of conductive transmission eigenfunctions. The geometric properties of interior transmission eigenfunctions were first studied in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. It is shown in two scenarios that the interior transmission eigenfunction must be locally vanishing near a corner of the domain with an interior angle less than π. We significantly extend and generalize those results in several aspects. First, we consider the conductive transmission eigenfunctions which include the interior transmission eigenfunctions as a special case. The geometric structures established for the conductive transmission eigenfunctions in this paper include the results in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 as a special case. Second, the vanishing property of the conductive transmission eigenfunctions is established for any corner as long as its interior angle is not π when the conductive transmission eigenfunctions satisfy certain Herglotz functions approximation properties. That means, as long as the corner singularity is not degenerate, the vanishing property holds if the underlying conductive transmission eigenfunctions can be approximated by a sequence of Herglotz functions under mild approximation rates. Third, the regularity requirements on the interior transmission eigenfunctions in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632 are significantly relaxed in the present study for the conductive transmission eigenfunctions. In order to establish the geometric properties for the conductive transmission eigenfunctions, we develop technically new methods and the corresponding analysis is much more complicated than that in Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. Finally, as an interesting and practical application of the obtained geometric results, we establish a unique recovery result for the inverse problem associated with the transverse electromagnetic scattering by a single far-field measurement in simultaneously determining a polygonal conductive obstacle and its surface conductive parameter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
525发布了新的文献求助10
1秒前
weske完成签到 ,获得积分10
1秒前
汤飞柏发布了新的文献求助10
1秒前
2秒前
naturehome发布了新的文献求助10
2秒前
英俊的铭应助gwq采纳,获得10
2秒前
刘波完成签到,获得积分20
3秒前
3秒前
云上人发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
ZZ完成签到,获得积分10
6秒前
CAOHOU应助zdesfsfa采纳,获得10
6秒前
7秒前
flippedaaa发布了新的文献求助10
7秒前
单薄咖啡豆完成签到 ,获得积分10
8秒前
藕饼教教徒完成签到,获得积分10
8秒前
凸迩丝儿发布了新的文献求助10
8秒前
DianaRang发布了新的文献求助10
8秒前
9秒前
咳咳咳发布了新的文献求助10
9秒前
10秒前
领导范儿应助熊猫采纳,获得20
10秒前
10秒前
抱着宇宙的星辰完成签到 ,获得积分10
10秒前
奋斗蜗牛发布了新的文献求助10
10秒前
yum发布了新的文献求助10
13秒前
追光者完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
CoreyW发布了新的文献求助10
15秒前
皂皂发布了新的文献求助10
15秒前
乐事薯片噢完成签到,获得积分10
15秒前
语冰完成签到,获得积分10
16秒前
17秒前
17秒前
zhzhzh完成签到,获得积分10
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126