重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge

计算机科学 GSM演进的增强数据速率 卷积神经网络 边缘设备 边缘计算 学习迁移 计算 人工智能 深度学习 计算机工程 机器学习 算法 操作系统 云计算
作者
Chaoyang He,Murali Annavaram,Salman Avestimehr
出处
期刊:Cornell University - arXiv 被引量:163
标识
DOI:10.48550/arxiv.2007.14513
摘要

Scaling up the convolutional neural network (CNN) size (e.g., width, depth, etc.) is known to effectively improve model accuracy. However, the large model size impedes training on resource-constrained edge devices. For instance, federated learning (FL) may place undue burden on the compute capability of edge nodes, even though there is a strong practical need for FL due to its privacy and confidentiality properties. To address the resource-constrained reality of edge devices, we reformulate FL as a group knowledge transfer training algorithm, called FedGKT. FedGKT designs a variant of the alternating minimization approach to train small CNNs on edge nodes and periodically transfer their knowledge by knowledge distillation to a large server-side CNN. FedGKT consolidates several advantages into a single framework: reduced demand for edge computation, lower communication bandwidth for large CNNs, and asynchronous training, all while maintaining model accuracy comparable to FedAvg. We train CNNs designed based on ResNet-56 and ResNet-110 using three distinct datasets (CIFAR-10, CIFAR-100, and CINIC-10) and their non-I.I.D. variants. Our results show that FedGKT can obtain comparable or even slightly higher accuracy than FedAvg. More importantly, FedGKT makes edge training affordable. Compared to the edge training using FedAvg, FedGKT demands 9 to 17 times less computational power (FLOPs) on edge devices and requires 54 to 105 times fewer parameters in the edge CNN. Our source code is released at FedML (https://fedml.ai).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小告白完成签到,获得积分10
刚刚
JustXing完成签到,获得积分20
1秒前
英俊的铭应助光亮翠风采纳,获得10
1秒前
2秒前
3秒前
5秒前
Andy完成签到,获得积分10
5秒前
自觉冰巧发布了新的文献求助10
5秒前
可爱的函函应助cheng采纳,获得10
6秒前
jiaying发布了新的文献求助10
6秒前
7秒前
7秒前
二中所长发布了新的文献求助10
8秒前
HHY完成签到,获得积分10
8秒前
不安的采白完成签到,获得积分10
8秒前
鸽子完成签到,获得积分10
9秒前
10秒前
auguscai发布了新的文献求助10
10秒前
SmileLin发布了新的文献求助10
11秒前
Hello应助怕孤独的鸿采纳,获得10
11秒前
treeman发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
李健的粉丝团团长应助Hui采纳,获得10
15秒前
15秒前
jinsijia发布了新的文献求助10
16秒前
17秒前
自觉冰巧完成签到,获得积分10
17秒前
18秒前
21秒前
21秒前
xdli发布了新的文献求助10
21秒前
jinggaier完成签到 ,获得积分10
22秒前
22秒前
23秒前
无极微光应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737