SMOTE-LOF for noise identification in imbalanced data classification

过采样 计算机科学 离群值 鉴定(生物学) 数据挖掘 噪音(视频) 机器学习 人工智能 模式识别(心理学) 计算机网络 植物 生物 图像(数学) 带宽(计算)
作者
Asniar Asniar,Nur Ulfa Maulidevi,Kridanto Surendro
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:34 (6): 3413-3423 被引量:76
标识
DOI:10.1016/j.jksuci.2021.01.014
摘要

Imbalanced data typically refers to a condition in which several data samples in a certain problem is not equally distributed, thereby leading to the underrepresentation of one or more classes in the dataset. These underrepresented classes are referred to as a minority, while the overrepresented ones are called the majority. The unequal distribution of data leads to the machine's inability to carry out predictive accuracy in determining the minority classes, thereby causing various costs of classification errors. Currently, the standard framework used to solve the unequal distribution of imbalanced data learning is the Synthetic Minority Oversampling Technique (SMOTE). However, SMOTE can produce synthetic minority data samples considered as noise, which is also part of the majority classes. Therefore, this study aims to improve SMOTE to identify the noise from synthetic minority data produced in handling imbalanced data by adding the Local Outlier Factor (LOF). The proposed method is called SMOTE-LOF, and the experiment was carried out using imbalanced datasets with the results compared with the performance of the SMOTE. The results showed that SMOTE-LOF produces better accuracy and f-measure than the SMOTE. In a dataset with a large number of data examples and a smaller imbalance ratio, the SMOTE-LOF approach also produced a better AUC than the SMOTE. However, for a dataset with a smaller number of data samples, the SMOTE's AUC result is arguably better at handling imbalanced data. Therefore, future research needs to be carried out using different datasets with combinations varying from the number of data samples and the imbalanced ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
璇22发布了新的文献求助10
刚刚
来杯生椰拿铁完成签到,获得积分10
1秒前
闫先生完成签到,获得积分10
1秒前
1秒前
鱼子西完成签到,获得积分10
1秒前
baisefengche完成签到,获得积分20
1秒前
2秒前
寒冷书竹发布了新的文献求助10
3秒前
令人秃头发布了新的文献求助10
4秒前
iyy完成签到,获得积分20
4秒前
LuciusHe发布了新的文献求助10
4秒前
领导范儿应助NNUsusan采纳,获得10
4秒前
搞怪城完成签到,获得积分10
4秒前
水吉水吉完成签到,获得积分10
4秒前
哆啦完成签到,获得积分10
5秒前
ily.发布了新的文献求助10
5秒前
FashionBoy应助科研扫地僧采纳,获得10
5秒前
admin完成签到,获得积分10
5秒前
zzzy完成签到 ,获得积分10
6秒前
6秒前
顺利紫山发布了新的文献求助10
6秒前
pluto应助宁阿霜采纳,获得10
7秒前
无辜紫菜完成签到,获得积分10
9秒前
zhugongwangdawei完成签到,获得积分10
9秒前
admin发布了新的文献求助10
9秒前
9秒前
leodu发布了新的文献求助10
10秒前
芹菜完成签到,获得积分10
10秒前
SHAO应助璇22采纳,获得10
10秒前
10秒前
DDKK发布了新的文献求助50
11秒前
ily.完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
Ava应助胡导家的菜狗采纳,获得10
13秒前
Hi完成签到 ,获得积分10
14秒前
充电宝应助lilianan采纳,获得10
14秒前
lin发布了新的文献求助20
14秒前
美好斓发布了新的文献求助30
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620