已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SMOTE-LOF for noise identification in imbalanced data classification

过采样 计算机科学 离群值 鉴定(生物学) 数据挖掘 噪音(视频) 机器学习 人工智能 模式识别(心理学) 计算机网络 植物 生物 图像(数学) 带宽(计算)
作者
Asniar Asniar,Nur Ulfa Maulidevi,Kridanto Surendro
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:34 (6): 3413-3423 被引量:76
标识
DOI:10.1016/j.jksuci.2021.01.014
摘要

Imbalanced data typically refers to a condition in which several data samples in a certain problem is not equally distributed, thereby leading to the underrepresentation of one or more classes in the dataset. These underrepresented classes are referred to as a minority, while the overrepresented ones are called the majority. The unequal distribution of data leads to the machine's inability to carry out predictive accuracy in determining the minority classes, thereby causing various costs of classification errors. Currently, the standard framework used to solve the unequal distribution of imbalanced data learning is the Synthetic Minority Oversampling Technique (SMOTE). However, SMOTE can produce synthetic minority data samples considered as noise, which is also part of the majority classes. Therefore, this study aims to improve SMOTE to identify the noise from synthetic minority data produced in handling imbalanced data by adding the Local Outlier Factor (LOF). The proposed method is called SMOTE-LOF, and the experiment was carried out using imbalanced datasets with the results compared with the performance of the SMOTE. The results showed that SMOTE-LOF produces better accuracy and f-measure than the SMOTE. In a dataset with a large number of data examples and a smaller imbalance ratio, the SMOTE-LOF approach also produced a better AUC than the SMOTE. However, for a dataset with a smaller number of data samples, the SMOTE's AUC result is arguably better at handling imbalanced data. Therefore, future research needs to be carried out using different datasets with combinations varying from the number of data samples and the imbalanced ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮龙OVO完成签到,获得积分10
1秒前
1秒前
3秒前
窝窝窝书发布了新的文献求助10
3秒前
科研通AI5应助就叫小王吧采纳,获得10
3秒前
4秒前
4秒前
末末完成签到 ,获得积分10
4秒前
专注的采梦完成签到 ,获得积分10
5秒前
无心的无施完成签到,获得积分10
6秒前
秋千发布了新的文献求助10
7秒前
7秒前
DC发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
追寻的从云完成签到 ,获得积分10
9秒前
10秒前
lihaodajia完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
干净语梦发布了新的文献求助10
14秒前
15秒前
xiaochen发布了新的文献求助10
17秒前
田様应助打工人采纳,获得10
18秒前
仁爱亦旋发布了新的文献求助10
18秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
猪猪hero应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
毛豆应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
21秒前
爆米花应助DC采纳,获得10
22秒前
SciGPT应助raycee采纳,获得10
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073176
关于积分的说明 9129919
捐赠科研通 2764838
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009