SMOTE-LOF for noise identification in imbalanced data classification

过采样 计算机科学 离群值 鉴定(生物学) 数据挖掘 噪音(视频) 机器学习 人工智能 模式识别(心理学) 计算机网络 植物 生物 图像(数学) 带宽(计算)
作者
Asniar Asniar,Nur Ulfa Maulidevi,Kridanto Surendro
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:34 (6): 3413-3423 被引量:76
标识
DOI:10.1016/j.jksuci.2021.01.014
摘要

Imbalanced data typically refers to a condition in which several data samples in a certain problem is not equally distributed, thereby leading to the underrepresentation of one or more classes in the dataset. These underrepresented classes are referred to as a minority, while the overrepresented ones are called the majority. The unequal distribution of data leads to the machine's inability to carry out predictive accuracy in determining the minority classes, thereby causing various costs of classification errors. Currently, the standard framework used to solve the unequal distribution of imbalanced data learning is the Synthetic Minority Oversampling Technique (SMOTE). However, SMOTE can produce synthetic minority data samples considered as noise, which is also part of the majority classes. Therefore, this study aims to improve SMOTE to identify the noise from synthetic minority data produced in handling imbalanced data by adding the Local Outlier Factor (LOF). The proposed method is called SMOTE-LOF, and the experiment was carried out using imbalanced datasets with the results compared with the performance of the SMOTE. The results showed that SMOTE-LOF produces better accuracy and f-measure than the SMOTE. In a dataset with a large number of data examples and a smaller imbalance ratio, the SMOTE-LOF approach also produced a better AUC than the SMOTE. However, for a dataset with a smaller number of data samples, the SMOTE's AUC result is arguably better at handling imbalanced data. Therefore, future research needs to be carried out using different datasets with combinations varying from the number of data samples and the imbalanced ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没见热爱完成签到,获得积分10
2秒前
shendu发布了新的文献求助10
2秒前
2秒前
2秒前
qqy完成签到,获得积分10
4秒前
不安的橘子完成签到,获得积分10
4秒前
5秒前
小鱼仔发布了新的文献求助10
5秒前
5秒前
lgq12697应助白兔采纳,获得10
5秒前
xiaomi发布了新的文献求助10
6秒前
小致完成签到,获得积分10
6秒前
不想干活应助高高钢铁侠采纳,获得10
6秒前
浮游应助高高钢铁侠采纳,获得10
6秒前
柔弱飞槐完成签到,获得积分10
6秒前
七页禾发布了新的文献求助30
6秒前
今后应助落雨采纳,获得10
6秒前
6秒前
7秒前
ekko完成签到,获得积分10
8秒前
8秒前
10秒前
JamesPei应助科研通管家采纳,获得20
10秒前
ding应助科研通管家采纳,获得10
10秒前
Ava应助快来吃甜瓜采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
Chaos发布了新的文献求助10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
我是老大应助shendu采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055