ALSTM: An attention-based long short-term memory framework for knowledge base reasoning

计算机科学 人工智能 知识库 机器学习 强化学习 循环神经网络 人工神经网络 自然语言处理
作者
Qi Wang,Yongsheng Hao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:399: 342-351 被引量:20
标识
DOI:10.1016/j.neucom.2020.02.065
摘要

Knowledge Graphs (KGs) have been applied to various application scenarios including Web searching, Q&A, recommendation system, natural language processing and so on. However, the vast majority of Knowledge Bases (KBs) are incomplete, necessitating a demand for KB completion (KBC). Methods of KBC used in the mainstream current knowledge base include the latent factor model, the random walk model and recent popular methods based on reinforcement learning, which performs well in their respective areas of expertise. Recurrent neural network (RNN) and its variants model temporal data by remembering information for long periods, however, whether they also have the ability to use the information they have already remembered to achieve complex reasoning in the knowledge graph. In this paper, we produce a novel framework (ALSTM) based on the Attention mechanism and Long Short-Term Memory (LSTM), which associates structure learning with parameter learning of first-order logical rules in an end-to-end differentiable neural networks model. In this framework, we designed a memory system and employed a multi-head dot product attention (MHDPA) to interact and update the memories embedded in the memory system for reasoning purposes. This is also consistent with the process of human cognition and reasoning, looking for enlightenment for the future in historical memory. In addition, we explored the use of inductive bias in deep learning to facilitate learning of entities, relations, and rules. Experiments establish the efficiency and effectiveness of our model and show that our method achieves better performance in tasks which include fact prediction and link prediction than baseline models on several benchmark datasets such as WN18RR, FB15K-237 and NELL-995.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
轻松的梦竹完成签到,获得积分10
1秒前
1秒前
渡江渡完成签到,获得积分20
2秒前
3秒前
细心雨安完成签到 ,获得积分10
3秒前
于于发布了新的文献求助10
3秒前
斯文败类应助red采纳,获得10
3秒前
3秒前
3秒前
aa完成签到,获得积分10
3秒前
4秒前
十八完成签到,获得积分10
4秒前
yolo发布了新的文献求助10
4秒前
张张园完成签到,获得积分10
5秒前
发酱完成签到,获得积分10
5秒前
张自燮完成签到,获得积分10
5秒前
5秒前
顾一纯完成签到 ,获得积分10
6秒前
6秒前
瑾玉完成签到,获得积分10
6秒前
6秒前
原始人完成签到,获得积分10
7秒前
7秒前
崛宸发布了新的文献求助50
7秒前
鑫搭发布了新的文献求助10
7秒前
8秒前
谢爱佳发布了新的文献求助10
9秒前
大爱人生发布了新的文献求助10
9秒前
zhuyuxin发布了新的文献求助10
10秒前
合适的蛋挞完成签到,获得积分20
11秒前
杨乃彬完成签到,获得积分10
11秒前
12秒前
beifeng发布了新的文献求助10
12秒前
12秒前
包容的惜雪完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
顾一纯关注了科研通微信公众号
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4913717
求助须知:如何正确求助?哪些是违规求助? 4188247
关于积分的说明 13007459
捐赠科研通 3956973
什么是DOI,文献DOI怎么找? 2169503
邀请新用户注册赠送积分活动 1187820
关于科研通互助平台的介绍 1095383