已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ALSTM: An attention-based long short-term memory framework for knowledge base reasoning

计算机科学 人工智能 知识库 机器学习 强化学习 循环神经网络 人工神经网络 自然语言处理
作者
Qi Wang,Yongsheng Hao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:399: 342-351 被引量:20
标识
DOI:10.1016/j.neucom.2020.02.065
摘要

Knowledge Graphs (KGs) have been applied to various application scenarios including Web searching, Q&A, recommendation system, natural language processing and so on. However, the vast majority of Knowledge Bases (KBs) are incomplete, necessitating a demand for KB completion (KBC). Methods of KBC used in the mainstream current knowledge base include the latent factor model, the random walk model and recent popular methods based on reinforcement learning, which performs well in their respective areas of expertise. Recurrent neural network (RNN) and its variants model temporal data by remembering information for long periods, however, whether they also have the ability to use the information they have already remembered to achieve complex reasoning in the knowledge graph. In this paper, we produce a novel framework (ALSTM) based on the Attention mechanism and Long Short-Term Memory (LSTM), which associates structure learning with parameter learning of first-order logical rules in an end-to-end differentiable neural networks model. In this framework, we designed a memory system and employed a multi-head dot product attention (MHDPA) to interact and update the memories embedded in the memory system for reasoning purposes. This is also consistent with the process of human cognition and reasoning, looking for enlightenment for the future in historical memory. In addition, we explored the use of inductive bias in deep learning to facilitate learning of entities, relations, and rules. Experiments establish the efficiency and effectiveness of our model and show that our method achieves better performance in tasks which include fact prediction and link prediction than baseline models on several benchmark datasets such as WN18RR, FB15K-237 and NELL-995.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性大米完成签到,获得积分10
1秒前
Jello发布了新的文献求助10
2秒前
刘思雨发布了新的文献求助10
3秒前
诺诺完成签到 ,获得积分10
6秒前
英姑应助满意的世界采纳,获得10
7秒前
今后应助淡定的半梦采纳,获得10
7秒前
无敌小宽哥完成签到,获得积分10
9秒前
10秒前
13秒前
nnn发布了新的文献求助10
16秒前
zxyyxz完成签到,获得积分10
18秒前
归海梦岚完成签到,获得积分0
19秒前
微笑的铸海完成签到 ,获得积分10
20秒前
22秒前
小鲤鱼完成签到 ,获得积分10
22秒前
MMMMMeng完成签到,获得积分10
25秒前
潇洒绿蕊完成签到,获得积分10
26秒前
26秒前
嘟嘟嘟嘟完成签到 ,获得积分10
27秒前
28秒前
Joaquin完成签到 ,获得积分10
28秒前
29秒前
30秒前
Xiaoxiao应助ZHN采纳,获得50
30秒前
30秒前
Lucas应助TKTKW采纳,获得30
32秒前
33秒前
风行发布了新的文献求助10
35秒前
35秒前
35秒前
兴奋平松完成签到 ,获得积分10
38秒前
41秒前
hello小鹿完成签到,获得积分10
41秒前
秋作完成签到 ,获得积分10
43秒前
nnn完成签到,获得积分10
44秒前
CodeCraft应助科研进化中采纳,获得10
45秒前
46秒前
风行完成签到,获得积分10
47秒前
mymEN完成签到 ,获得积分10
48秒前
JamesPei应助燕傲柏采纳,获得10
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510745
关于积分的说明 11154993
捐赠科研通 3245194
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168