亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Whale Optimization Algorithm Improved Effectiveness Analysis Based on Compound Chaos Optimization Strategy and Dynamic Optimization Parameters

混沌(操作系统) 优化算法 鲸鱼 计算机科学 算法 数学优化 数学 渔业 计算机安全 生物
作者
Xuyi Shi,Ming Li
标识
DOI:10.1109/icvris.2019.00088
摘要

Basing on the fact that the basic whale optimization algorithm has the defects including low convergence precision and it is easy to fall into the local optimal solution when solving the objective function whose optimal solution is not near the origin. A new whale optimization algorithm (Dio-WOA) based on compound chaos optimization strategy and dynamic improved parameters is proposed. In the algorithm, the chaos optimization strategy set is first introduced for multiple solution links. At the same time, the convergence factor of WOA a is improved and the inertia weight w is introduced, so the algorithm can slow down the convergence speed in the early stage for each generation to fully explore the overall algorithm and accelerate in the later iteration to improve the accuracy of the algorithm. At the same time, chaos strategy concentrates on the chaos optimization strategy for the optimal solution can help the algorithm effectively choose the solution out of the local optimal solution. This paper verifies the comprehensive performance of the Dio-WOA algorithm and the effectiveness of various improvement measures. Several undetermined dimension single-peak and multi-peak test functions are introduced to verify the performance of the overall algorithm and the local improvement algorithm. The results show that the single improvement measures can effectively improve the performance of the algorithm and each measure has different performance directions. The comprehensive performance of Dio-WOA is better than that of single improvement measures, which proves the effective compatibility between the improvement measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
19秒前
21秒前
morena发布了新的文献求助10
23秒前
loen完成签到,获得积分10
25秒前
46秒前
克姑美完成签到 ,获得积分10
48秒前
王饱饱完成签到 ,获得积分10
51秒前
53秒前
wjw123发布了新的文献求助10
57秒前
爆米花应助天真咖啡豆采纳,获得10
1分钟前
beplayer1完成签到 ,获得积分10
1分钟前
1分钟前
义气的书雁完成签到,获得积分10
1分钟前
1分钟前
自由橘子完成签到 ,获得积分10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
务实书包完成签到,获得积分10
2分钟前
李爱国应助优美的冥幽采纳,获得30
2分钟前
2分钟前
被雨穿透发布了新的文献求助10
3分钟前
Betty发布了新的文献求助10
3分钟前
4分钟前
田様应助Carrots采纳,获得10
4分钟前
kw98完成签到 ,获得积分10
4分钟前
小w发布了新的文献求助10
4分钟前
Betty完成签到,获得积分10
4分钟前
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
小w发布了新的文献求助10
5分钟前
SDNUDRUG完成签到,获得积分10
5分钟前
5分钟前
5分钟前
要不先吃饭完成签到,获得积分10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773657
求助须知:如何正确求助?哪些是违规求助? 3319141
关于积分的说明 10193294
捐赠科研通 3033802
什么是DOI,文献DOI怎么找? 1664695
邀请新用户注册赠送积分活动 796270
科研通“疑难数据库(出版商)”最低求助积分说明 757416