已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging

医学 肺癌 深度学习 置信区间 卷积神经网络 无线电技术 医学影像学 阶段(地层学) 癌症 内科学 放射科 肿瘤科 人工智能 计算机科学 生物 古生物学
作者
Yiwen Xu,Ahmed Hosny,Roman Zeleznik,Chintan Parmar,Thibaud Coroller,Idalid Franco,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:25 (11): 3266-3275 被引量:448
标识
DOI:10.1158/1078-0432.ccr-18-2495
摘要

Abstract Purpose: Tumors are continuously evolving biological systems, and medical imaging is uniquely positioned to monitor changes throughout treatment. Although qualitatively tracking lesions over space and time may be trivial, the development of clinically relevant, automated radiomics methods that incorporate serial imaging data is far more challenging. In this study, we evaluated deep learning networks for predicting clinical outcomes through analyzing time series CT images of patients with locally advanced non–small cell lung cancer (NSCLC). Experimental Design: Dataset A consists of 179 patients with stage III NSCLC treated with definitive chemoradiation, with pretreatment and posttreatment CT images at 1, 3, and 6 months follow-up (581 scans). Models were developed using transfer learning of convolutional neural networks (CNN) with recurrent neural networks (RNN), using single seed-point tumor localization. Pathologic response validation was performed on dataset B, comprising 89 patients with NSCLC treated with chemoradiation and surgery (178 scans). Results: Deep learning models using time series scans were significantly predictive of survival and cancer-specific outcomes (progression, distant metastases, and local-regional recurrence). Model performance was enhanced with each additional follow-up scan into the CNN model (e.g., 2-year overall survival: AUC = 0.74, P < 0.05). The models stratified patients into low and high mortality risk groups, which were significantly associated with overall survival [HR = 6.16; 95% confidence interval (CI), 2.17–17.44; P < 0.001]. The model also significantly predicted pathologic response in dataset B (P = 0.016). Conclusions: We demonstrate that deep learning can integrate imaging scans at multiple timepoints to improve clinical outcome predictions. AI-based noninvasive radiomics biomarkers can have a significant impact in the clinic given their low cost and minimal requirements for human input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助飞奔小子采纳,获得10
刚刚
2秒前
3秒前
赵乂完成签到,获得积分10
3秒前
SciGPT应助Dasiliy采纳,获得10
4秒前
十号信封完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
今后应助我亦化身东海去采纳,获得10
6秒前
7秒前
coster发布了新的文献求助10
8秒前
lee0708发布了新的文献求助10
8秒前
森森森发布了新的文献求助10
9秒前
11秒前
12秒前
13秒前
杰杰大叔发布了新的文献求助20
13秒前
飞奔小子发布了新的文献求助10
13秒前
小米粥发布了新的文献求助10
13秒前
MMX发布了新的文献求助10
16秒前
coster完成签到,获得积分10
16秒前
17秒前
泪是雨的旋律关注了科研通微信公众号
17秒前
lcj1014发布了新的文献求助10
18秒前
虚拟的冰双完成签到,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
Alex应助科研通管家采纳,获得20
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
ZhaohuaXie应助科研通管家采纳,获得20
23秒前
大个应助科研通管家采纳,获得10
23秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934725
求助须知:如何正确求助?哪些是违规求助? 4202490
关于积分的说明 13057604
捐赠科研通 3976864
什么是DOI,文献DOI怎么找? 2179284
邀请新用户注册赠送积分活动 1195452
关于科研通互助平台的介绍 1106840