Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging

医学 肺癌 深度学习 置信区间 卷积神经网络 无线电技术 医学影像学 阶段(地层学) 癌症 内科学 放射科 肿瘤科 人工智能 计算机科学 生物 古生物学
作者
Yiwen Xu,Ahmed Hosny,Roman Zeleznik,Chintan Parmar,Thibaud Coroller,Idalid Franco,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:25 (11): 3266-3275 被引量:448
标识
DOI:10.1158/1078-0432.ccr-18-2495
摘要

Abstract Purpose: Tumors are continuously evolving biological systems, and medical imaging is uniquely positioned to monitor changes throughout treatment. Although qualitatively tracking lesions over space and time may be trivial, the development of clinically relevant, automated radiomics methods that incorporate serial imaging data is far more challenging. In this study, we evaluated deep learning networks for predicting clinical outcomes through analyzing time series CT images of patients with locally advanced non–small cell lung cancer (NSCLC). Experimental Design: Dataset A consists of 179 patients with stage III NSCLC treated with definitive chemoradiation, with pretreatment and posttreatment CT images at 1, 3, and 6 months follow-up (581 scans). Models were developed using transfer learning of convolutional neural networks (CNN) with recurrent neural networks (RNN), using single seed-point tumor localization. Pathologic response validation was performed on dataset B, comprising 89 patients with NSCLC treated with chemoradiation and surgery (178 scans). Results: Deep learning models using time series scans were significantly predictive of survival and cancer-specific outcomes (progression, distant metastases, and local-regional recurrence). Model performance was enhanced with each additional follow-up scan into the CNN model (e.g., 2-year overall survival: AUC = 0.74, P < 0.05). The models stratified patients into low and high mortality risk groups, which were significantly associated with overall survival [HR = 6.16; 95% confidence interval (CI), 2.17–17.44; P < 0.001]. The model also significantly predicted pathologic response in dataset B (P = 0.016). Conclusions: We demonstrate that deep learning can integrate imaging scans at multiple timepoints to improve clinical outcome predictions. AI-based noninvasive radiomics biomarkers can have a significant impact in the clinic given their low cost and minimal requirements for human input.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助冷傲老头采纳,获得20
1秒前
2秒前
长长的名字完成签到 ,获得积分10
6秒前
斯文败类应助jila采纳,获得10
7秒前
10秒前
Hello应助嘿嘿采纳,获得10
11秒前
可可可可汁完成签到 ,获得积分10
14秒前
无奈的尔容完成签到,获得积分10
16秒前
Xiaohu完成签到,获得积分10
17秒前
XIEQ发布了新的文献求助10
18秒前
18秒前
科研通AI6应助yyanxuemin919采纳,获得10
20秒前
20秒前
22秒前
24秒前
一头猪发布了新的文献求助10
25秒前
Bazinga完成签到,获得积分10
25秒前
嗯嗯嗯完成签到,获得积分10
26秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
26秒前
27秒前
嘿嘿发布了新的文献求助10
27秒前
able完成签到 ,获得积分10
28秒前
29秒前
嗯嗯嗯发布了新的文献求助10
30秒前
丘比特应助度ewf采纳,获得10
31秒前
丽丽丽发布了新的文献求助10
31秒前
yyanxuemin919发布了新的文献求助10
31秒前
蘑菇完成签到 ,获得积分10
34秒前
jam发布了新的文献求助10
34秒前
35秒前
烟花应助ccc采纳,获得10
36秒前
拉长的诗蕊完成签到,获得积分10
36秒前
37秒前
大妙妙完成签到 ,获得积分10
40秒前
40秒前
里里完成签到 ,获得积分10
41秒前
韩妙发布了新的文献求助10
42秒前
科研通AI6应助丽丽丽采纳,获得10
43秒前
太渊完成签到 ,获得积分10
43秒前
ccc发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432