Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging

医学 肺癌 深度学习 置信区间 卷积神经网络 无线电技术 医学影像学 阶段(地层学) 癌症 内科学 放射科 肿瘤科 人工智能 计算机科学 生物 古生物学
作者
Yiwen Xu,Ahmed Hosny,Roman Zeleznik,Chintan Parmar,Thibaud Coroller,Idalid Franco,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:25 (11): 3266-3275 被引量:448
标识
DOI:10.1158/1078-0432.ccr-18-2495
摘要

Abstract Purpose: Tumors are continuously evolving biological systems, and medical imaging is uniquely positioned to monitor changes throughout treatment. Although qualitatively tracking lesions over space and time may be trivial, the development of clinically relevant, automated radiomics methods that incorporate serial imaging data is far more challenging. In this study, we evaluated deep learning networks for predicting clinical outcomes through analyzing time series CT images of patients with locally advanced non–small cell lung cancer (NSCLC). Experimental Design: Dataset A consists of 179 patients with stage III NSCLC treated with definitive chemoradiation, with pretreatment and posttreatment CT images at 1, 3, and 6 months follow-up (581 scans). Models were developed using transfer learning of convolutional neural networks (CNN) with recurrent neural networks (RNN), using single seed-point tumor localization. Pathologic response validation was performed on dataset B, comprising 89 patients with NSCLC treated with chemoradiation and surgery (178 scans). Results: Deep learning models using time series scans were significantly predictive of survival and cancer-specific outcomes (progression, distant metastases, and local-regional recurrence). Model performance was enhanced with each additional follow-up scan into the CNN model (e.g., 2-year overall survival: AUC = 0.74, P < 0.05). The models stratified patients into low and high mortality risk groups, which were significantly associated with overall survival [HR = 6.16; 95% confidence interval (CI), 2.17–17.44; P < 0.001]. The model also significantly predicted pathologic response in dataset B (P = 0.016). Conclusions: We demonstrate that deep learning can integrate imaging scans at multiple timepoints to improve clinical outcome predictions. AI-based noninvasive radiomics biomarkers can have a significant impact in the clinic given their low cost and minimal requirements for human input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niusama发布了新的文献求助10
刚刚
1秒前
寒冷巧曼完成签到 ,获得积分10
2秒前
大气海露完成签到,获得积分20
2秒前
Stephendo发布了新的文献求助10
3秒前
小慕斯完成签到,获得积分20
4秒前
4秒前
施奇赞完成签到,获得积分10
5秒前
5秒前
大气海露发布了新的文献求助10
5秒前
changaipei完成签到,获得积分10
6秒前
bkagyin应助左左采纳,获得10
6秒前
飞飞鱼完成签到 ,获得积分10
6秒前
吴图图完成签到,获得积分20
7秒前
8秒前
8秒前
8秒前
meili发布了新的文献求助30
8秒前
9秒前
MFiWanting完成签到,获得积分10
9秒前
10秒前
吴图图发布了新的文献求助30
10秒前
活力的乐天完成签到,获得积分10
10秒前
研友_X894JZ完成签到 ,获得积分10
11秒前
平常的无极完成签到,获得积分10
12秒前
12秒前
洛阳发布了新的文献求助10
13秒前
1renebaebae发布了新的文献求助10
13秒前
13秒前
niusama完成签到,获得积分10
14秒前
Ava应助付创采纳,获得10
14秒前
zzz发布了新的文献求助10
14秒前
15秒前
elgar612发布了新的文献求助30
15秒前
李健应助木子采纳,获得20
15秒前
15秒前
HI完成签到 ,获得积分10
16秒前
Lucas应助悲伤晴天雨采纳,获得10
16秒前
SciGPT应助大气海露采纳,获得10
16秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149