Prediction models for preeclampsia: A systematic review

子痫前期 医学 预测建模 怀孕 体质指数 产科 内科学 计算机科学 机器学习 遗传学 生物
作者
Annelien C. de Kat,Jane E. Hirst,Mark Woodward,Stephen Kennedy,Sanne A. E. Peters
出处
期刊:Pregnancy Hypertension [Elsevier]
卷期号:16: 48-66 被引量:96
标识
DOI:10.1016/j.preghy.2019.03.005
摘要

Preeclampsia is a disease specific to pregnancy that can cause severe maternal and foetal morbidity and mortality. Early identification of women at higher risk for preeclampsia could potentially aid early prevention and treatment. Although a plethora of preeclampsia prediction models have been developed in recent years, individualised prediction of preeclampsia is rarely used in clinical practice. The objective of this systematic review was to provide an overview of studies on preeclampsia prediction. Relevant research papers were identified through a MEDLINE search up to 1 January 2017. Prognostic studies on the prediction of preeclampsia or preeclampsia-related disorders were included. Quality screening was performed with the Quality in Prognostic Studies (QUIPS) tool. Sixty-eight prediction models from 70 studies with 425,125 participants were selected for further review. The number of participants varied and the gestational age at prediction varied widely across studies. The most frequently used predictors were medical history, body mass index, blood pressure, parity, uterine artery pulsatility index, and maternal age. The type of predictor (maternal characteristics, ultrasound markers and/or biomarkers) was not clearly associated with model discrimination. Few prediction studies were internally (4%) or externally (6%) validated. To date, multiple and widely varying models for preeclampsia prediction have been developed, some yielding promising results. The high degree of between-study heterogeneity impedes selection of the best model, or an aggregated analysis of prognostic models. Before multivariable preeclampsia prediction can be clinically implemented universally, further validation and calibration of well-performing prediction models is needed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小红完成签到,获得积分10
1秒前
枪手完成签到,获得积分10
1秒前
小七发布了新的文献求助10
1秒前
1秒前
Jason发布了新的文献求助10
2秒前
3秒前
踏实的寒安完成签到,获得积分10
4秒前
无花果应助hyw010724采纳,获得10
5秒前
香豆素完成签到 ,获得积分10
5秒前
yangderder完成签到,获得积分20
7秒前
番茄鱼完成签到 ,获得积分10
8秒前
9秒前
9秒前
yangderder发布了新的文献求助10
10秒前
10秒前
彭于晏应助John采纳,获得10
10秒前
buno应助王砍砍采纳,获得10
11秒前
Xbro完成签到,获得积分10
12秒前
my完成签到,获得积分20
13秒前
美式不加糖bjt完成签到,获得积分10
14秒前
14秒前
14秒前
Xbro发布了新的文献求助10
14秒前
抹茶玉兔完成签到,获得积分10
15秒前
Q123ba叭发布了新的文献求助10
15秒前
JamesPei应助小小宇宇采纳,获得10
16秒前
现代的秋白完成签到,获得积分10
16秒前
17秒前
Excalibur发布了新的文献求助30
18秒前
希望天下0贩的0应助Xbro采纳,获得10
18秒前
大白牛发布了新的文献求助10
19秒前
whyyy完成签到 ,获得积分10
19秒前
marongzhi完成签到 ,获得积分10
19秒前
lynnleecc完成签到,获得积分10
20秒前
hyw010724发布了新的文献求助10
20秒前
听闻墨笙完成签到 ,获得积分10
24秒前
Finncik发布了新的文献求助30
25秒前
萧水白应助Excalibur采纳,获得10
25秒前
buno应助诚心的水杯采纳,获得10
27秒前
大模型应助西鹿采纳,获得10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798