肌萎缩侧索硬化
SOD1
生物
诱导多能干细胞
神经科学
表型
C9orf72
疾病
医学
遗传学
病理
基因
三核苷酸重复扩增
胚胎干细胞
等位基因
作者
Koki Fujimori,Mitsuru Ishikawa,Asako Otomo,Naoki Suzuki,Ryoichi Nakamura,Tetsuya Akiyama,Shinji Hadano,Masashi Aoki,Hideyuki Saya,Gen Sobue,Hideyuki Okano
出处
期刊:Nature Medicine
[Springer Nature]
日期:2018-08-20
卷期号:24 (10): 1579-1589
被引量:381
标识
DOI:10.1038/s41591-018-0140-5
摘要
Amyotrophic lateral sclerosis (ALS) is a heterogeneous motor neuron disease for which no effective treatment is available, despite decades of research into SOD1-mutant familial ALS (FALS). The majority of ALS patients have no familial history, making the modeling of sporadic ALS (SALS) essential to the development of ALS therapeutics. However, as mutations underlying ALS pathogenesis have not yet been identified, it remains difficult to establish useful models of SALS. Using induced pluripotent stem cell (iPSC) technology to generate stem and differentiated cells retaining the patients' full genetic information, we have established a large number of in vitro cellular models of SALS. These models showed phenotypic differences in their pattern of neuronal degeneration, types of abnormal protein aggregates, cell death mechanisms, and onset and progression of these phenotypes in vitro among cases. We therefore developed a system for case clustering capable of subdividing these heterogeneous SALS models by their in vitro characteristics. We further evaluated multiple-phenotype rescue of these subclassified SALS models using agents selected from non-SOD1 FALS models, and identified ropinirole as a potential therapeutic candidate. Integration of the datasets acquired in this study permitted the visualization of molecular pathologies shared across a wide range of SALS models.
科研通智能强力驱动
Strongly Powered by AbleSci AI