Multi-Graph Convolutional-Recurrent Neural Network (MGC-RNN) for Short-Term Forecasting of Transit Passenger Flow

计算机科学 循环神经网络 卷积神经网络 图形 水准点(测量) 流入 深度学习 编码 流量网络 期限(时间) 数据挖掘 人工智能 实时计算 人工神经网络 理论计算机科学 地理 气象学 数学 化学 生物化学 数学优化 物理 大地测量学 基因 量子力学
作者
Yuxin He,Lishuai Li,Xinting Zhu,Kwok‐Leung Tsui
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 18155-18174 被引量:52
标识
DOI:10.1109/tits.2022.3150600
摘要

Short-term forecasting of passenger flow is critical for transit management and crowd regulation. Spatial dependencies, temporal dependencies, inter-station correlations driven by other latent factors, and exogenous factors bring challenges to the short-term forecasts of passenger flow of urban rail transit networks. An innovative deep learning approach, Multi-Graph Convolutional-Recurrent Neural Network (MGC-RNN) is proposed to forecast passenger flow in urban rail transit systems to incorporate these complex factors. We propose to use multiple graphs to encode the spatial and other heterogenous inter-station correlations. The temporal dynamics of the inter-station correlations are also modeled via the proposed multi-graph convolutional-recurrent neural network structure. Inflow and outflow of all stations can be collectively predicted with multiple time steps ahead via a sequence to sequence(seq2seq) architecture. The proposed method is applied to the short-term forecasts of passenger flow in Shenzhen Metro, China. The experimental results show that MGC-RNN outperforms the benchmark algorithms in terms of forecasting accuracy. Besides, it is found that the inter-station driven by network distance, network structure, and recent flow patterns are significant factors for passenger flow forecasting. Moreover, the architecture of LSTM-encoder-decoder can capture the temporal dependencies well. In general, the proposed framework could provide multiple views of passenger flow dynamics for fine prediction and exhibit a possibility for multi-source heterogeneous data fusion in the spatiotemporal forecast tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scia发布了新的文献求助10
刚刚
从容的盼晴完成签到,获得积分10
1秒前
酷波er应助春风得意采纳,获得10
2秒前
喜气洋洋发布了新的文献求助10
3秒前
若朴祭司发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
荞麦面发布了新的文献求助10
7秒前
xiaolong完成签到 ,获得积分10
7秒前
8秒前
科研通AI2S应助hh0采纳,获得10
9秒前
9秒前
auoooooo完成签到,获得积分20
9秒前
10秒前
10秒前
一一应助zsyzxb采纳,获得20
11秒前
顺心蜜粉应助木云浅夏采纳,获得10
12秒前
12秒前
13秒前
黄玥发布了新的文献求助10
13秒前
15秒前
mortal完成签到 ,获得积分10
15秒前
17秒前
1234完成签到,获得积分10
18秒前
Henry完成签到,获得积分10
18秒前
20秒前
21秒前
1234发布了新的文献求助10
22秒前
23秒前
23秒前
jyy应助鳗鱼语薇采纳,获得10
24秒前
若朴祭司完成签到,获得积分10
24秒前
Kirin发布了新的文献求助30
25秒前
yyyang发布了新的文献求助10
25秒前
优秀的大炮完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
J_应助zq123采纳,获得80
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240875
求助须知:如何正确求助?哪些是违规求助? 2885573
关于积分的说明 8239275
捐赠科研通 2554021
什么是DOI,文献DOI怎么找? 1382130
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097