Enhancing the robustness of the convolutional neural networks for traffic sign detection

稳健性(进化) 计算机科学 卷积神经网络 人工智能 深度学习 交通标志 机器学习 目标检测 模式识别(心理学) 符号(数学) 数学 生物化学 基因 数学分析 化学
作者
Amir Khosravian,Abdollah Amirkhani,Masoud Masih‐Tehrani
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:236 (8): 1849-1861 被引量:18
标识
DOI:10.1177/09544070211042961
摘要

The detection of traffic signs in clean and noise-free images has been investigated by numerous researchers; however, very few of these works have focused on noisy environments. While in the real world, for different reasons (e.g. the speed and acceleration of a vehicle and the roughness around it), the input images of the convolutional neural networks (CNNs) could be extremely noisy. Contrary to other research works, in this paper, we investigate the robustness of the deep learning models against the synthetically modeled noises in the detection of small objects. To this end, the state-of-the-art architectures of Faster-RCNN Resnet101, R-FCN Resnet101, and Faster-RCNN Inception Resnet V2 are trained by means of the Tsinghua-Tencent 100K database, and the performances of the trained models on noisy data are evaluated. After verifying the robustness of these models, different training scenarios (1 – Modeling various climatic conditions, 2 – Style randomization, and 3 – Augmix augmentation) are used to enhance the model robustness. The findings indicate that these scenarios result in up to 13.09%, 12%, and 13.61% gains in the mentioned three networks by means of the mPC metric. They also result in 11.74%, 8.89%, and 7.27% gains in the rPC metric, demonstrating that improvement in robustness does not lead to performance drop on the clean data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NIM-ZHAO发布了新的文献求助30
刚刚
liuyushi发布了新的文献求助10
刚刚
5Hepburn发布了新的文献求助10
刚刚
YY发布了新的文献求助10
1秒前
1秒前
帅气夜梦发布了新的文献求助10
1秒前
virgil完成签到,获得积分10
3秒前
3秒前
4秒前
angel完成签到,获得积分10
4秒前
rony发布了新的文献求助10
4秒前
续续完成签到,获得积分10
4秒前
陶醉觅夏发布了新的文献求助10
5秒前
5秒前
小冬猫完成签到 ,获得积分10
7秒前
8秒前
YA应助西瘡采纳,获得30
10秒前
叽里咕卢发布了新的文献求助10
10秒前
hzauhzau发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
爆米花应助锋锋采纳,获得10
13秒前
shchen完成签到,获得积分10
13秒前
DrNant完成签到,获得积分10
13秒前
zzzzzzz完成签到,获得积分10
14秒前
聪明帅哥发布了新的文献求助10
14秒前
冷酷的文博完成签到,获得积分20
15秒前
caas6发布了新的文献求助10
15秒前
陶醉觅夏发布了新的文献求助10
16秒前
16秒前
jiandan发布了新的文献求助10
16秒前
小程同学发布了新的文献求助10
17秒前
英姑应助5Hepburn采纳,获得10
17秒前
NIM-ZHAO完成签到,获得积分10
18秒前
18秒前
xxxxx完成签到,获得积分0
18秒前
18秒前
20秒前
丘比特应助欣慰友梅采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231478
求助须知:如何正确求助?哪些是违规求助? 2878539
关于积分的说明 8206665
捐赠科研通 2546026
什么是DOI,文献DOI怎么找? 1375617
科研通“疑难数据库(出版商)”最低求助积分说明 647437
邀请新用户注册赠送积分活动 622542