Enhancing the robustness of the convolutional neural networks for traffic sign detection

稳健性(进化) 计算机科学 卷积神经网络 人工智能 深度学习 交通标志 机器学习 目标检测 模式识别(心理学) 符号(数学) 数学 生物化学 基因 数学分析 化学
作者
Amir Khosravian,Abdollah Amirkhani,Masoud Masih‐Tehrani
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:236 (8): 1849-1861 被引量:18
标识
DOI:10.1177/09544070211042961
摘要

The detection of traffic signs in clean and noise-free images has been investigated by numerous researchers; however, very few of these works have focused on noisy environments. While in the real world, for different reasons (e.g. the speed and acceleration of a vehicle and the roughness around it), the input images of the convolutional neural networks (CNNs) could be extremely noisy. Contrary to other research works, in this paper, we investigate the robustness of the deep learning models against the synthetically modeled noises in the detection of small objects. To this end, the state-of-the-art architectures of Faster-RCNN Resnet101, R-FCN Resnet101, and Faster-RCNN Inception Resnet V2 are trained by means of the Tsinghua-Tencent 100K database, and the performances of the trained models on noisy data are evaluated. After verifying the robustness of these models, different training scenarios (1 – Modeling various climatic conditions, 2 – Style randomization, and 3 – Augmix augmentation) are used to enhance the model robustness. The findings indicate that these scenarios result in up to 13.09%, 12%, and 13.61% gains in the mentioned three networks by means of the mPC metric. They also result in 11.74%, 8.89%, and 7.27% gains in the rPC metric, demonstrating that improvement in robustness does not lead to performance drop on the clean data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素若枫完成签到,获得积分10
2秒前
LaiZiwen发布了新的文献求助10
2秒前
euy发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
此间少年郎完成签到 ,获得积分10
6秒前
xuan完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
ccmxigua发布了新的文献求助10
10秒前
10秒前
今后应助胡萝卜采纳,获得10
11秒前
11秒前
科研通AI6应助夜莺采纳,获得10
11秒前
彭于晏应助kevin采纳,获得10
11秒前
h1909完成签到,获得积分10
11秒前
爱的魔力转圈圈完成签到,获得积分10
12秒前
orixero应助旺仔糖采纳,获得10
12秒前
bob发布了新的文献求助10
12秒前
小亓发布了新的文献求助10
12秒前
15秒前
漱泉枕石完成签到,获得积分10
15秒前
华仔应助edtaa采纳,获得10
15秒前
田様应助euy采纳,获得10
15秒前
外向汽车发布了新的文献求助10
16秒前
Nextf1sh完成签到,获得积分10
16秒前
xxy关注了科研通微信公众号
17秒前
科研通AI5应助张立敏采纳,获得10
19秒前
19秒前
20秒前
铁甲小宝完成签到,获得积分10
20秒前
77完成签到,获得积分10
20秒前
SallyLuo完成签到,获得积分10
20秒前
21秒前
fdawn完成签到,获得积分10
21秒前
旺仔糖完成签到,获得积分20
22秒前
上官若男应助闹心采纳,获得10
23秒前
量子星尘发布了新的文献求助150
23秒前
大米发布了新的文献求助30
23秒前
秋风暖暖发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048792
求助须知:如何正确求助?哪些是违规求助? 4277060
关于积分的说明 13332258
捐赠科研通 4091605
什么是DOI,文献DOI怎么找? 2239138
邀请新用户注册赠送积分活动 1246031
关于科研通互助平台的介绍 1174599