Enhancing the robustness of the convolutional neural networks for traffic sign detection

稳健性(进化) 计算机科学 卷积神经网络 人工智能 深度学习 交通标志 机器学习 目标检测 模式识别(心理学) 符号(数学) 数学 生物化学 基因 数学分析 化学
作者
Amir Khosravian,Abdollah Amirkhani,Masoud Masih‐Tehrani
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:236 (8): 1849-1861 被引量:18
标识
DOI:10.1177/09544070211042961
摘要

The detection of traffic signs in clean and noise-free images has been investigated by numerous researchers; however, very few of these works have focused on noisy environments. While in the real world, for different reasons (e.g. the speed and acceleration of a vehicle and the roughness around it), the input images of the convolutional neural networks (CNNs) could be extremely noisy. Contrary to other research works, in this paper, we investigate the robustness of the deep learning models against the synthetically modeled noises in the detection of small objects. To this end, the state-of-the-art architectures of Faster-RCNN Resnet101, R-FCN Resnet101, and Faster-RCNN Inception Resnet V2 are trained by means of the Tsinghua-Tencent 100K database, and the performances of the trained models on noisy data are evaluated. After verifying the robustness of these models, different training scenarios (1 – Modeling various climatic conditions, 2 – Style randomization, and 3 – Augmix augmentation) are used to enhance the model robustness. The findings indicate that these scenarios result in up to 13.09%, 12%, and 13.61% gains in the mentioned three networks by means of the mPC metric. They also result in 11.74%, 8.89%, and 7.27% gains in the rPC metric, demonstrating that improvement in robustness does not lead to performance drop on the clean data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助小李采纳,获得10
1秒前
纯真的伟诚应助TONG采纳,获得10
1秒前
1秒前
2秒前
3秒前
小马奔奔发布了新的文献求助10
3秒前
3秒前
DD应助maliyang采纳,获得10
4秒前
4秒前
4秒前
5秒前
Pidan完成签到,获得积分10
5秒前
baibai完成签到,获得积分10
5秒前
wanci应助呵呵呵采纳,获得10
5秒前
Myu111111完成签到,获得积分10
5秒前
西门访曼发布了新的文献求助10
6秒前
6秒前
ZWK发布了新的文献求助10
6秒前
在水一方应助feifei采纳,获得10
7秒前
星辰大海应助无限妙梦采纳,获得10
8秒前
ZHQ发布了新的文献求助10
8秒前
TAboo发布了新的文献求助10
8秒前
8秒前
Myu111111发布了新的文献求助10
8秒前
乐乐应助优雅泡芙采纳,获得20
9秒前
ZORA完成签到,获得积分10
9秒前
孙行者发布了新的文献求助10
10秒前
田様应助如意的小丸子采纳,获得10
10秒前
xianglily发布了新的文献求助30
10秒前
羊羊羊发布了新的文献求助10
10秒前
祁乐天完成签到,获得积分10
10秒前
1256完成签到,获得积分10
11秒前
自由新竹发布了新的文献求助10
12秒前
Wang完成签到,获得积分10
13秒前
13秒前
传奇3应助月亮采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033