Risk prediction model of in-hospital mortality in heart failure with preserved ejection fraction and mid-range ejection fraction: a retrospective cohort study

医学 射血分数保留的心力衰竭 内科学 心力衰竭 射血分数 心脏病学 弗雷明翰风险评分 多元统计 队列 急诊医学 回顾性队列研究 队列研究 统计 疾病 数学
作者
Chuan-He Wang,Sileny Han,Fei Tong,Ying Li,Zhichao Li,Zhihui Sun
出处
期刊:Biomarkers in Medicine [Future Medicine]
卷期号:15 (14): 1223-1232 被引量:1
标识
DOI:10.2217/bmm-2021-0025
摘要

Aim: To develop and validate internally a multivariate risk model for predicting the in-hospital mortality of patients with heart failure with preserved ejection fraction (HFpEF) and heart failure with mid-range ejection fraction (HFmrEF). Methods & results: The clinical data of 8172 inpatients with HFpEF and HFmrEF was used to establish a retrospective database. These patients, among whom 307 in-hospital deaths (3.8%) occurred, were randomly assigned to derivation and verification cohort. Among the extracted data from the derivation cohort were nine variables significantly related to in-hospital mortality, which were scored 0-4, for a total score of 24, which allowed formation of a risk predictive model. The verification cohort was then used to validate the discrimination and calibration capacities of this predictive model: the area under curve equaled 0.8575 (0.8285, 0.8865) for the derivation cohort, and 0.8323 (0.7999, 0.8646) for the verification cohort. According to this risk score, we divided patients into four risk classes (low-, medium-, high- and extremely high-risk) and revealed that the risk of in-hospital mortality increased with increasing risk class with an obvious linear relationship between actual and predicted mortality (r = 0.998, p < 0.001). Conclusion: The model based on nine common clinical variables should provide an accurate prediction of in-hospital mortality and appears to be a reliable risk classification system for patients with HFpEF and HFmrEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sankumao发布了新的文献求助30
刚刚
奋斗的盼柳完成签到 ,获得积分10
1秒前
2秒前
Jasper应助handsomecat采纳,获得10
2秒前
2秒前
李雪完成签到,获得积分10
3秒前
3秒前
sv发布了新的文献求助10
5秒前
小田完成签到,获得积分10
5秒前
茶茶完成签到,获得积分20
5秒前
苏兴龙完成签到,获得积分10
5秒前
坚强的亦云-333完成签到,获得积分10
5秒前
Ava应助dan1029采纳,获得10
6秒前
6秒前
6秒前
奶糖最可爱完成签到,获得积分10
7秒前
7秒前
mojomars发布了新的文献求助10
8秒前
幽壑之潜蛟应助茶茶采纳,获得10
8秒前
9秒前
9秒前
9秒前
迅速海云完成签到,获得积分10
9秒前
sjxx发布了新的文献求助10
9秒前
9秒前
乐乐应助Rachel采纳,获得10
10秒前
10秒前
10秒前
天天快乐应助孤独的珩采纳,获得10
11秒前
帅气鹭洋发布了新的文献求助20
11秒前
12秒前
孙悦发布了新的文献求助10
12秒前
知性的绮兰完成签到,获得积分10
12秒前
12秒前
13秒前
Zzzoey完成签到,获得积分10
14秒前
14秒前
14秒前
英姑应助桂魄采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794