Risk Prediction Model of In-Hospital Mortality in Heart Failure with Preserved Ejection Fraction and Mid-Range Ejection Fraction: A Retrospective Cohort Study

医学 射血分数保留的心力衰竭 内科学 心力衰竭 射血分数 心脏病学 弗雷明翰风险评分 多元统计 队列 急诊医学 回顾性队列研究 队列研究 统计 疾病 数学
作者
Chuan-He Wang,Han Su,Fei Tong,Ying Li,Zhichao Li,Zhijun Sun
出处
期刊:Biomarkers in Medicine [Future Medicine]
卷期号:15 (14): 1223-1232 被引量:5
标识
DOI:10.2217/bmm-2021-0025
摘要

Aim: To develop and validate internally a multivariate risk model for predicting the in-hospital mortality of patients with heart failure with preserved ejection fraction (HFpEF) and heart failure with mid-range ejection fraction (HFmrEF). Methods & results: The clinical data of 8172 inpatients with HFpEF and HFmrEF was used to establish a retrospective database. These patients, among whom 307 in-hospital deaths (3.8%) occurred, were randomly assigned to derivation and verification cohort. Among the extracted data from the derivation cohort were nine variables significantly related to in-hospital mortality, which were scored 0–4, for a total score of 24, which allowed formation of a risk predictive model. The verification cohort was then used to validate the discrimination and calibration capacities of this predictive model: the area under curve equaled 0.8575 (0.8285, 0.8865) for the derivation cohort, and 0.8323 (0.7999, 0.8646) for the verification cohort. According to this risk score, we divided patients into four risk classes (low-, medium-, high- and extremely high-risk) and revealed that the risk of in-hospital mortality increased with increasing risk class with an obvious linear relationship between actual and predicted mortality (r = 0.998, p < 0.001). Conclusion: The model based on nine common clinical variables should provide an accurate prediction of in-hospital mortality and appears to be a reliable risk classification system for patients with HFpEF and HFmrEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王帅完成签到,获得积分10
刚刚
八百标兵奔北坡完成签到 ,获得积分10
1秒前
香蕉觅云应助赵耀采纳,获得10
1秒前
能干可乐发布了新的文献求助10
1秒前
炙热愫发布了新的文献求助10
2秒前
drew发布了新的文献求助30
2秒前
yznfly给宣幻桃的求助进行了留言
2秒前
Bosen完成签到,获得积分10
2秒前
YZQ发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
ZZQQ完成签到,获得积分20
3秒前
山雷发布了新的文献求助10
3秒前
LinChen应助邵璞采纳,获得10
3秒前
3秒前
超级的鞅发布了新的文献求助10
4秒前
李健应助甜筒采纳,获得10
4秒前
5秒前
所所应助吧唧吧唧采纳,获得10
5秒前
jin_0124完成签到,获得积分10
5秒前
6秒前
young发布了新的文献求助10
7秒前
蛋子s发布了新的文献求助10
8秒前
zaq发布了新的文献求助10
8秒前
NexusExplorer应助超级的鞅采纳,获得10
8秒前
浪子应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
浪子应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得30
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802