Nomogram Predicting Cancer-Specific Death in Parotid Carcinoma: a Competing Risk Analysis

单变量 列线图 多元统计 医学 内科学 肿瘤科 比例危险模型 回归分析 累积发病率 流行病学 阶段(地层学) 接收机工作特性 多元分析 危险系数 逻辑回归 统计 癌症 生存分析 队列 回顾性队列研究 置信区间 单变量分析 预测模型 风险评估 优势比 数学
作者
Xiancai Li,Mingbin Hu,Weiguo Gu,Dewu Liu,Jinhong Mei,Shaoqing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:3
标识
DOI:10.3389/fonc.2021.698870
摘要

Multiple factors have been shown to be tied to the prognosis of individuals with parotid cancer (PC); however, there are limited numbers of reliable as well as straightforward tools available for clinical estimation of individualized mortality. Here, a competing risk nomogram was established to assess the risk of cancer-specific deaths (CSD) in individuals with PC.Data of PC patients analyzed in this work were retrieved from the Surveillance, Epidemiology, and End Results (SEER) data repository and the First Affiliated Hospital of Nanchang University (China). Univariate Lasso regression coupled with multivariate Cox assessments were adopted to explore the predictive factors influencing CSD. The cumulative incidence function (CIF) coupled with the Fine-Gray proportional hazards model was employed to determine the risk indicators tied to CSD as per the univariate, as well as multivariate analyses conducted in the R software. Finally, we created and validated a nomogram to forecast the 3- and 5-year CSD likelihood.Overall, 1,467 PC patients were identified from the SEER data repository, with the 3- and 5-year CSD CIF after diagnosis being 21.4% and 24.1%, respectively. The univariate along with the Lasso regression data revealed that nine independent risk factors were tied to CSD in the test dataset (n = 1,035) retrieved from the SEER data repository. Additionally, multivariate data of Fine-Gray proportional subdistribution hazards model illustrated that N stage, Age, T stage, Histologic, M stage, grade, surgery, and radiation were independent risk factors influencing CSD in an individual with PC in the test dataset (p < 0.05). Based on optimization performed using the Bayesian information criterion (BIC), six variables were incorporated in the prognostic nomogram. In the internal SEER data repository verification dataset (n = 432) and the external medical center verification dataset (n = 473), our nomogram was well calibrated and exhibited considerable estimation efficiency.The competing risk nomogram presented here can be used for assessing cancer-specific mortality in PC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章鱼发布了新的文献求助10
刚刚
chenhouhan发布了新的文献求助10
刚刚
牛曙东完成签到,获得积分10
1秒前
里里应助刘研采纳,获得10
1秒前
1秒前
所所应助付艳采纳,获得10
2秒前
2秒前
Lucas应助第七个星球采纳,获得10
2秒前
mooncake发布了新的文献求助10
2秒前
zx发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
Ludi完成签到,获得积分10
3秒前
伏波完成签到,获得积分0
3秒前
Hello应助KeYang采纳,获得10
4秒前
小马发布了新的文献求助30
4秒前
西出阳关完成签到,获得积分10
4秒前
jinlin完成签到,获得积分10
4秒前
5秒前
丘比特应助爱听歌采纳,获得10
5秒前
6秒前
horizon完成签到,获得积分20
6秒前
7秒前
7秒前
诚心冬亦完成签到,获得积分10
7秒前
天明完成签到,获得积分10
7秒前
稳重的太兰完成签到 ,获得积分10
7秒前
8秒前
8秒前
griffon完成签到,获得积分10
8秒前
木木完成签到,获得积分10
9秒前
cyndi发布了新的文献求助10
9秒前
9秒前
zx完成签到,获得积分10
10秒前
第七个星球完成签到,获得积分10
10秒前
搜集达人应助xh采纳,获得10
10秒前
11秒前
求助人员应助pax采纳,获得10
11秒前
青菜发布了新的文献求助10
11秒前
11秒前
Thi发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271