Nomogram Predicting Cancer-Specific Death in Parotid Carcinoma: a Competing Risk Analysis

单变量 列线图 多元统计 医学 内科学 肿瘤科 比例危险模型 回归分析 累积发病率 流行病学 阶段(地层学) 接收机工作特性 多元分析 危险系数 逻辑回归 统计 癌症 生存分析 队列 回顾性队列研究 置信区间 单变量分析 预测模型 风险评估 优势比 数学
作者
Xiancai Li,Mingbin Hu,Weiguo Gu,Dewu Liu,Jinhong Mei,Shaoqing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:3
标识
DOI:10.3389/fonc.2021.698870
摘要

Multiple factors have been shown to be tied to the prognosis of individuals with parotid cancer (PC); however, there are limited numbers of reliable as well as straightforward tools available for clinical estimation of individualized mortality. Here, a competing risk nomogram was established to assess the risk of cancer-specific deaths (CSD) in individuals with PC.Data of PC patients analyzed in this work were retrieved from the Surveillance, Epidemiology, and End Results (SEER) data repository and the First Affiliated Hospital of Nanchang University (China). Univariate Lasso regression coupled with multivariate Cox assessments were adopted to explore the predictive factors influencing CSD. The cumulative incidence function (CIF) coupled with the Fine-Gray proportional hazards model was employed to determine the risk indicators tied to CSD as per the univariate, as well as multivariate analyses conducted in the R software. Finally, we created and validated a nomogram to forecast the 3- and 5-year CSD likelihood.Overall, 1,467 PC patients were identified from the SEER data repository, with the 3- and 5-year CSD CIF after diagnosis being 21.4% and 24.1%, respectively. The univariate along with the Lasso regression data revealed that nine independent risk factors were tied to CSD in the test dataset (n = 1,035) retrieved from the SEER data repository. Additionally, multivariate data of Fine-Gray proportional subdistribution hazards model illustrated that N stage, Age, T stage, Histologic, M stage, grade, surgery, and radiation were independent risk factors influencing CSD in an individual with PC in the test dataset (p < 0.05). Based on optimization performed using the Bayesian information criterion (BIC), six variables were incorporated in the prognostic nomogram. In the internal SEER data repository verification dataset (n = 432) and the external medical center verification dataset (n = 473), our nomogram was well calibrated and exhibited considerable estimation efficiency.The competing risk nomogram presented here can be used for assessing cancer-specific mortality in PC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luria完成签到,获得积分10
刚刚
爱大美完成签到,获得积分10
1秒前
3秒前
hdd完成签到,获得积分10
4秒前
星辰大海应助爱大美采纳,获得10
4秒前
davyean完成签到,获得积分10
5秒前
hyq008完成签到,获得积分10
5秒前
飞行致幻剂完成签到,获得积分10
5秒前
zhouyou完成签到,获得积分10
6秒前
Shawn完成签到,获得积分10
6秒前
Fxxkme发布了新的文献求助10
7秒前
道友等等我完成签到,获得积分0
7秒前
还是算了完成签到,获得积分10
7秒前
7秒前
陆浩学化学完成签到 ,获得积分10
8秒前
Yyy完成签到 ,获得积分10
8秒前
小白完成签到,获得积分10
8秒前
小灰灰完成签到,获得积分10
9秒前
平常亦凝完成签到,获得积分20
10秒前
花花完成签到,获得积分10
10秒前
waikeyan完成签到,获得积分20
11秒前
不吃了完成签到 ,获得积分10
11秒前
阳光傲菡完成签到 ,获得积分10
12秒前
13秒前
Yziii完成签到,获得积分0
13秒前
平常亦凝发布了新的文献求助10
13秒前
123完成签到 ,获得积分10
14秒前
句号完成签到 ,获得积分10
14秒前
15秒前
碗在水中央完成签到 ,获得积分10
15秒前
TAboo完成签到,获得积分10
15秒前
yoyocici1505完成签到,获得积分10
16秒前
冷酷的啤酒完成签到,获得积分10
16秒前
z小婉完成签到,获得积分10
17秒前
Reybor完成签到,获得积分10
17秒前
高贵的思天完成签到,获得积分10
18秒前
lina完成签到,获得积分10
18秒前
梦璃完成签到,获得积分10
19秒前
追寻思远发布了新的文献求助10
20秒前
Tammy完成签到 ,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134060
求助须知:如何正确求助?哪些是违规求助? 2784861
关于积分的说明 7769107
捐赠科研通 2440349
什么是DOI,文献DOI怎么找? 1297368
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792