Nomogram Predicting Cancer-Specific Death in Parotid Carcinoma: a Competing Risk Analysis

单变量 列线图 多元统计 医学 内科学 肿瘤科 比例危险模型 回归分析 累积发病率 流行病学 阶段(地层学) 接收机工作特性 多元分析 危险系数 逻辑回归 统计 癌症 生存分析 队列 回顾性队列研究 置信区间 单变量分析 预测模型 风险评估 优势比 数学
作者
Xiancai Li,Mingbin Hu,Weiguo Gu,Dewu Liu,Jinhong Mei,Shaoqing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:3
标识
DOI:10.3389/fonc.2021.698870
摘要

Multiple factors have been shown to be tied to the prognosis of individuals with parotid cancer (PC); however, there are limited numbers of reliable as well as straightforward tools available for clinical estimation of individualized mortality. Here, a competing risk nomogram was established to assess the risk of cancer-specific deaths (CSD) in individuals with PC.Data of PC patients analyzed in this work were retrieved from the Surveillance, Epidemiology, and End Results (SEER) data repository and the First Affiliated Hospital of Nanchang University (China). Univariate Lasso regression coupled with multivariate Cox assessments were adopted to explore the predictive factors influencing CSD. The cumulative incidence function (CIF) coupled with the Fine-Gray proportional hazards model was employed to determine the risk indicators tied to CSD as per the univariate, as well as multivariate analyses conducted in the R software. Finally, we created and validated a nomogram to forecast the 3- and 5-year CSD likelihood.Overall, 1,467 PC patients were identified from the SEER data repository, with the 3- and 5-year CSD CIF after diagnosis being 21.4% and 24.1%, respectively. The univariate along with the Lasso regression data revealed that nine independent risk factors were tied to CSD in the test dataset (n = 1,035) retrieved from the SEER data repository. Additionally, multivariate data of Fine-Gray proportional subdistribution hazards model illustrated that N stage, Age, T stage, Histologic, M stage, grade, surgery, and radiation were independent risk factors influencing CSD in an individual with PC in the test dataset (p < 0.05). Based on optimization performed using the Bayesian information criterion (BIC), six variables were incorporated in the prognostic nomogram. In the internal SEER data repository verification dataset (n = 432) and the external medical center verification dataset (n = 473), our nomogram was well calibrated and exhibited considerable estimation efficiency.The competing risk nomogram presented here can be used for assessing cancer-specific mortality in PC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyy完成签到,获得积分10
刚刚
完美世界应助Liiii采纳,获得10
1秒前
科研通AI2S应助乒乒乓乓采纳,获得10
2秒前
yang完成签到,获得积分10
2秒前
tong完成签到,获得积分10
2秒前
123完成签到,获得积分10
3秒前
小包子完成签到,获得积分10
4秒前
小佳发布了新的文献求助10
4秒前
羊里里梨完成签到 ,获得积分10
4秒前
上官若男应助燕燕采纳,获得10
4秒前
ZL发布了新的文献求助10
5秒前
yang发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
火山完成签到,获得积分20
8秒前
小马甲应助发光爆米花采纳,获得10
8秒前
summer夏完成签到,获得积分10
9秒前
GHX完成签到 ,获得积分10
11秒前
Hann完成签到,获得积分10
12秒前
12秒前
Wind应助云梦雪采纳,获得10
12秒前
wanci应助哈哈哈采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
CipherSage应助LALA采纳,获得30
13秒前
So完成签到 ,获得积分10
14秒前
Wind应助yide采纳,获得20
14秒前
15秒前
liu完成签到 ,获得积分10
15秒前
共享精神应助机灵的友儿采纳,获得10
16秒前
ZL完成签到,获得积分10
17秒前
大饼完成签到 ,获得积分10
17秒前
18秒前
英姑应助yangjuhua采纳,获得20
18秒前
19秒前
搜集达人应助Angora采纳,获得10
19秒前
好想吃李子完成签到,获得积分10
19秒前
hanyi完成签到 ,获得积分10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652693
求助须知:如何正确求助?哪些是违规求助? 4787996
关于积分的说明 15061272
捐赠科研通 4811158
什么是DOI,文献DOI怎么找? 2573692
邀请新用户注册赠送积分活动 1529549
关于科研通互助平台的介绍 1488312