亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nomogram Predicting Cancer-Specific Death in Parotid Carcinoma: a Competing Risk Analysis

单变量 列线图 多元统计 医学 内科学 肿瘤科 比例危险模型 回归分析 累积发病率 流行病学 阶段(地层学) 接收机工作特性 多元分析 危险系数 逻辑回归 统计 癌症 生存分析 队列 回顾性队列研究 置信区间 单变量分析 预测模型 风险评估 优势比 数学
作者
Xiancai Li,Mingbin Hu,Weiguo Gu,Dewu Liu,Jinhong Mei,Shaoqing Chen
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:3
标识
DOI:10.3389/fonc.2021.698870
摘要

Multiple factors have been shown to be tied to the prognosis of individuals with parotid cancer (PC); however, there are limited numbers of reliable as well as straightforward tools available for clinical estimation of individualized mortality. Here, a competing risk nomogram was established to assess the risk of cancer-specific deaths (CSD) in individuals with PC.Data of PC patients analyzed in this work were retrieved from the Surveillance, Epidemiology, and End Results (SEER) data repository and the First Affiliated Hospital of Nanchang University (China). Univariate Lasso regression coupled with multivariate Cox assessments were adopted to explore the predictive factors influencing CSD. The cumulative incidence function (CIF) coupled with the Fine-Gray proportional hazards model was employed to determine the risk indicators tied to CSD as per the univariate, as well as multivariate analyses conducted in the R software. Finally, we created and validated a nomogram to forecast the 3- and 5-year CSD likelihood.Overall, 1,467 PC patients were identified from the SEER data repository, with the 3- and 5-year CSD CIF after diagnosis being 21.4% and 24.1%, respectively. The univariate along with the Lasso regression data revealed that nine independent risk factors were tied to CSD in the test dataset (n = 1,035) retrieved from the SEER data repository. Additionally, multivariate data of Fine-Gray proportional subdistribution hazards model illustrated that N stage, Age, T stage, Histologic, M stage, grade, surgery, and radiation were independent risk factors influencing CSD in an individual with PC in the test dataset (p < 0.05). Based on optimization performed using the Bayesian information criterion (BIC), six variables were incorporated in the prognostic nomogram. In the internal SEER data repository verification dataset (n = 432) and the external medical center verification dataset (n = 473), our nomogram was well calibrated and exhibited considerable estimation efficiency.The competing risk nomogram presented here can be used for assessing cancer-specific mortality in PC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Li采纳,获得10
8秒前
57秒前
Li发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
mickaqi完成签到 ,获得积分10
1分钟前
666完成签到,获得积分10
1分钟前
2分钟前
Gryff完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助50
3分钟前
movoandy发布了新的文献求助10
3分钟前
3分钟前
勤勤恳恳写论文完成签到 ,获得积分10
4分钟前
4分钟前
Fairy发布了新的文献求助10
4分钟前
Fairy完成签到,获得积分10
4分钟前
文艺沉鱼完成签到 ,获得积分10
4分钟前
西山菩提完成签到,获得积分10
5分钟前
丘比特应助ceeray23采纳,获得20
5分钟前
义气的惜霜完成签到,获得积分10
5分钟前
6分钟前
Wei发布了新的文献求助10
6分钟前
7分钟前
7分钟前
7分钟前
Orange应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
Li关闭了Li文献求助
7分钟前
Li发布了新的文献求助10
8分钟前
Li完成签到,获得积分10
8分钟前
8分钟前
9分钟前
榴下晨光完成签到 ,获得积分10
9分钟前
9分钟前
ceeray23发布了新的文献求助20
9分钟前
JavedAli完成签到,获得积分10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105227
求助须知:如何正确求助?哪些是违规求助? 4315202
关于积分的说明 13444149
捐赠科研通 4143756
什么是DOI,文献DOI怎么找? 2270640
邀请新用户注册赠送积分活动 1273158
关于科研通互助平台的介绍 1210250