A Comprehensive Simulation Study of Warpage of Fan-out Panel-level Package using Element Birth and Death Technique

材料科学 图像扭曲 有限元法 环氧树脂 复合材料 扇出 薄脆饼 结构工程 工程类 计算机科学 光电子学 人工智能
作者
Yun-Kai Deng,Bing-Xian Yang,Weilin Hu,Xinping Zhang
出处
期刊:International Conference on Electronic Packaging Technology 卷期号:: 1-5 被引量:1
标识
DOI:10.1109/icept52650.2021.9568026
摘要

In recent years, the fan-out panel-level package (FOPLP) has attracted increasing attention due to its low cost while maintaining the same advantages of the fan-out wafer-level package (FOWLP) such as high I/O density and excellent performance. Compared with FOWLP, FOPLP possesses a higher carrier usage ratio and larger size, thus provides a cost-effective solution. However, FOPLP faces severe warpage problem caused by the mismatch of coefficient of thermal expansion (CTE) between the epoxy molding compound (EMC) and the carrier. In this study, a model of FOPLP featured with mold-first and die face-down approach is built and then used to evaluate and predict the warpage using ANSYS by means of the element birth and death technique based on finite element method (FEM). The effects of carrier types (glass, steel, FR4 and silicon) on warpage are analyzed. Meanwhile, some key geometric parameters affecting the warpage have also been considered, such as the thickness of the carrier, chips and EMC cap. Simulation results manifest that the difference of CTE between carrier and EMC affects the warping direction. When the CTE difference is small, the modulus is the key factor affecting the warpage direction. Increase in thickness of the carrier and its Young's modulus leads to decrease in warpage. Reducing the mismatch of CTE between carrier and EMC will reduce warpage significantly. The thickness of the EMC cap is also crucial to warpage, a large thickness can result in increase of the rigidity of the package and thus decrease of the warpage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助lamb采纳,获得10
1秒前
1秒前
2秒前
2秒前
yuting完成签到,获得积分10
3秒前
gsc发布了新的文献求助10
3秒前
打打应助到江南散步采纳,获得10
3秒前
悲伤火龙果给悲伤火龙果的求助进行了留言
4秒前
wxyinhefeng完成签到 ,获得积分10
5秒前
斩妖凉完成签到,获得积分10
5秒前
派大赐发布了新的文献求助30
5秒前
Joe完成签到,获得积分20
6秒前
欧拉发布了新的文献求助30
6秒前
ProfWang发布了新的文献求助30
6秒前
hy完成签到,获得积分10
10秒前
小二郎应助小西采纳,获得10
11秒前
11秒前
顾矜应助simon采纳,获得10
14秒前
16秒前
tuanheqi应助完美的海秋采纳,获得80
17秒前
19秒前
20秒前
21秒前
zzzyyyuuu完成签到 ,获得积分10
21秒前
lychee发布了新的文献求助10
22秒前
灰大壮壮关注了科研通微信公众号
22秒前
25秒前
25秒前
Clara凤发布了新的文献求助10
27秒前
28秒前
28秒前
剁椒鱼头完成签到 ,获得积分10
29秒前
云风发布了新的文献求助10
30秒前
Setlla发布了新的文献求助10
33秒前
34秒前
36秒前
39秒前
40秒前
Natsume发布了新的文献求助10
42秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241236
求助须知:如何正确求助?哪些是违规求助? 2885793
关于积分的说明 8240566
捐赠科研通 2554288
什么是DOI,文献DOI怎么找? 1382474
科研通“疑难数据库(出版商)”最低求助积分说明 649586
邀请新用户注册赠送积分活动 625228