DKTNet: Dual-Key Transformer Network for small object detection

计算机科学 变压器 计算 人工智能 卷积(计算机科学) 模式识别(心理学) 计算机视觉 算法 人工神经网络 电压 量子力学 物理
作者
Shengyuan Xu,Jianan Gu,Yining Hua,Yi Liu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:525: 29-41 被引量:16
标识
DOI:10.1016/j.neucom.2023.01.055
摘要

Object detection is a fundamental computer vision task that plays a crucial role in a wide range of real-world applications. However, it is still a challenging task to detect the small size objects in the complex scene, due to the low resolution and noisy representation appearance caused by occlusion, distant depth view, etc. To tackle this issue, a novel transformer architecture, Dual-Key Transformer Network (DKTNet), is proposed in this paper. To improve the feature attention ability, the coherence of linear layer outputs Q and V are enhanced by a dual-K integrated from K1 and K2, which are computed along Q and V, respectively. Instead of spatial-wise attention, channel-wise self-attention mechanism is adopted to promote the important feature channels and suppress the confusing ones. Moreover, 2D and 1D convolution computations for Q, K and V are proposed. Compared with the fully-connected computation in conventional transformer architectures, the 2D convolution can better capture local details and global contextual information, and the 1D convolution can reduce network complexity significantly. Experimental evaluation is conducted on both general and small object detection datasets. The superiority of the aforementioned features in our proposed approach is demonstrated with the comparison against the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助果粒橙采纳,获得10
刚刚
[刘小婷]完成签到,获得积分10
刚刚
qia完成签到,获得积分10
1秒前
2秒前
隐形曼青应助songvv采纳,获得10
3秒前
3秒前
3秒前
lalalala发布了新的文献求助30
4秒前
阿尔辛多完成签到,获得积分10
4秒前
5秒前
晨曦完成签到,获得积分10
5秒前
Paris完成签到,获得积分10
7秒前
上官若男应助自然的砖头采纳,获得10
8秒前
9秒前
222发布了新的文献求助10
9秒前
不争馒头争口气完成签到,获得积分10
9秒前
封闭货车发布了新的文献求助10
10秒前
刘羿完成签到,获得积分10
10秒前
song完成签到,获得积分10
11秒前
xj发布了新的文献求助10
11秒前
Ultraviolet发布了新的文献求助10
11秒前
12秒前
12秒前
斯文败类应助立秋采纳,获得10
12秒前
SciGPT应助Alessnndre采纳,获得10
12秒前
hcsdgf发布了新的文献求助10
13秒前
14秒前
邓谷云完成签到,获得积分10
15秒前
凌兰发布了新的文献求助10
16秒前
兴奋的之玉完成签到,获得积分20
16秒前
欣喜的代容完成签到 ,获得积分10
16秒前
songvv发布了新的文献求助10
17秒前
17秒前
宣孤菱发布了新的文献求助10
18秒前
19秒前
21秒前
xiubo128完成签到 ,获得积分10
21秒前
yyyfff完成签到,获得积分10
23秒前
CodeCraft应助司徒诗蕾采纳,获得10
23秒前
May想吃烤肉应助鲤鱼白玉采纳,获得10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792