Deep learning methods for oral cancer detection using Raman spectroscopy

深度学习 拉曼光谱 人工智能 计算机科学 舌头 人工神经网络 癌症 机器学习 模式识别(心理学) 病理 医学 内科学 光学 物理
作者
Xiaohan Chang,Mingxin Yu,Renyu Liu,Rixing Jing,Jingya Ding,Jiabin Xia,Zhihui Zhu,Xing Li,Qifeng Yao,Lianqing Zhu,Tao Zhang
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:126: 103522-103522 被引量:8
标识
DOI:10.1016/j.vibspec.2023.103522
摘要

The Raman spectroscopy analysis has been applied to the detection and research of oral cancer. One of the essential works in this technique is the Raman spectral data analysis method, which is mainly divided into two categories: traditional machine learning and deep learning. Especially, the deep learning method is proved that it could obtain higher accuracy in oral cancer identification than the traditional machine learning method. The purpose of this study is to test, compare, and analyze the performance of existing classical deep neural network models (AlexNet, VGGNet, ResNet50, MobileNetV2, Transformer) that recognize multiple types of oral cancer tissues. To achieve this goal, 16,200 Raman spectra are first collected from 180 tissue samples of 90 patients who have undergone a surgical resection due to tongue squamous cell carcinoma, gingival squamous cell carcinoma, and buccal squamous cell carcinoma. Then, the models are trained and predicted at the patient level. The experimental results demonstrate that the ResNet50 has the best performance in the identification of oral cancer tissue and normal tissue with an overall accuracy rate of 92.81%, an overall precision rate of 92.93%, and an overall recall rate of 92.86%. With this foundation, we further develop a prototype intelligent detection system with above five classical deep neural network models to realize multi-types of oral cancer tissue detection. Hopefully, our work can provide a guide for oral cancer detection using the deep learning method with Raman spectroscopy analysis and promote the development of clinical diagnosis system for oral cancer. The code is available at https://github.com/ISCLab-Bistu/deep-learning-for-OSCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔫清完成签到,获得积分10
刚刚
研友_VZG7GZ应助Yjj采纳,获得10
刚刚
大力的契完成签到,获得积分10
1秒前
耶瑟儿完成签到,获得积分10
1秒前
DullElm发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
泡沫完成签到,获得积分10
4秒前
耶瑟儿发布了新的文献求助10
4秒前
king2580完成签到,获得积分10
4秒前
wly完成签到,获得积分10
5秒前
HH完成签到 ,获得积分10
5秒前
02发布了新的文献求助10
5秒前
sugar发布了新的文献求助10
6秒前
共享精神应助廖同学采纳,获得10
7秒前
天天快乐应助方方公主采纳,获得10
7秒前
7秒前
7秒前
所所应助lss采纳,获得10
7秒前
DENG12345发布了新的文献求助10
8秒前
田様应助gulugulu采纳,获得10
8秒前
kiki发布了新的文献求助10
8秒前
研友_La17wL完成签到,获得积分10
8秒前
heather发布了新的文献求助10
9秒前
10秒前
CipherSage应助葡萄采纳,获得10
10秒前
ajing完成签到,获得积分10
10秒前
10秒前
10秒前
Hungrylunch完成签到,获得积分10
11秒前
whale完成签到,获得积分10
11秒前
serendipity完成签到,获得积分10
11秒前
QAQSS完成签到 ,获得积分10
12秒前
lijingwen发布了新的文献求助10
13秒前
lzp应助宁静致远采纳,获得10
14秒前
危机的慕卉完成签到 ,获得积分10
14秒前
14秒前
Xiang发布了新的文献求助10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167914
求助须知:如何正确求助?哪些是违规求助? 2819401
关于积分的说明 7926122
捐赠科研通 2479250
什么是DOI,文献DOI怎么找? 1320684
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443