A Novel IoT-Based Explainable Deep Learning Framework for Intrusion Detection Systems

计算机科学 入侵检测系统 透明度(行为) 物联网 人工智能 计算机安全 僵尸网络 背景(考古学) 人工神经网络 深度学习 机器学习 互联网 万维网 古生物学 生物
作者
Zakaria Abou El Houda,Bouziane Brik,Sidi‐Mohammed Senouci
出处
期刊:IEEE internet of things magazine [Institute of Electrical and Electronics Engineers]
卷期号:5 (2): 20-23 被引量:33
标识
DOI:10.1109/iotm.005.2200028
摘要

The growth of the Internet of Things (IoT) is accompanied by serious cybersecurity risks, especially with the emergence of IoT botnets. In this context, intrusion detection systems (IDSs) proved their efficiency in detecting various attacks that may target IoT networks, especially when leveraging machine/deep learning (ML/DL) techniques. In fact, ML/DL-based solutions make “machine-centric” decisions about intrusion detection in the IoT network, which are then executed by humans (i.e., executive cyber-security staff). However, ML/DL-based solutions do not provide any explanation of why such decisions were made, and thus their results cannot be properly understood/exploited by humans. To address this issue, explainable artificial intelligence (XAI) is a promising paradigm that helps to explain the decisions of ML/DL-based IDSs to make them understandable to cyber-security experts. In this article, we design a novel XAI-powered framework to enable not only detecting intrusions/attacks in IoT networks, but also interpret critical decisions made by ML/DL-based IDSs. Therefore, we first build an ML/DL-based IDS using a deep neural network (DNN) to detect and predict IoT attacks in real time. Then we develop multiple XAI models (i.e., RuleFit and SHapley Additive exPlanations, SHAP) on top of our DNN architecture to enable more trust, transparency, and explanation of the decisions made by our ML/DL-based IDS to cyber security experts. The in-depth experiment results with well-known IoT attacks show the efficiency and explainability of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分20
3秒前
6秒前
小云完成签到,获得积分10
8秒前
柯仇天发布了新的文献求助30
11秒前
iNk应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得80
12秒前
耀学菜菜应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
宜醉宜游宜睡应助小爽采纳,获得10
14秒前
申思发布了新的文献求助10
14秒前
梅一一完成签到,获得积分10
14秒前
14秒前
晴空万里完成签到,获得积分10
18秒前
xixihaha完成签到,获得积分10
18秒前
科科完成签到 ,获得积分10
19秒前
wuhu发布了新的文献求助10
19秒前
zz完成签到,获得积分10
19秒前
酷炫的傲旋完成签到,获得积分10
19秒前
aaa完成签到,获得积分10
20秒前
22秒前
小爽完成签到,获得积分10
24秒前
科研通AI2S应助奇奇吃面采纳,获得30
25秒前
26秒前
26秒前
irisxxxx完成签到,获得积分10
26秒前
一口吃三个月亮完成签到,获得积分10
27秒前
闲尾完成签到,获得积分10
27秒前
腼腆的乐安完成签到,获得积分10
29秒前
Roxanne完成签到,获得积分10
30秒前
CodeCraft应助申思采纳,获得10
31秒前
XZY发布了新的文献求助10
31秒前
烟花应助柯仇天采纳,获得10
33秒前
Zz完成签到 ,获得积分10
33秒前
36秒前
搜集达人应助ppppp采纳,获得10
37秒前
ppppp完成签到,获得积分10
41秒前
Darren发布了新的文献求助50
41秒前
闪闪元芹完成签到,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023