Deep Learning–Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial

医学 放射科 图像质量 核医学 DICOM 人工智能 计算机科学 图像(数学)
作者
Lawrence Tanenbaum,Suzie Bash,Greg Zaharchuk,Ajit Shankaranarayanan,Ryan Chamberlain,Max Wintermark,Christopher F. Beaulieu,M K NOVICK,L. Wang
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:44 (8): 987-993 被引量:10
标识
DOI:10.3174/ajnr.a7920
摘要

BACKGROUND AND PURPOSE:

Deep learning image reconstruction allows faster MR imaging acquisitions while matching or exceeding the standard of care and can create synthetic images from existing data sets. This multicenter, multireader spine study evaluated the performance of synthetically created STIR compared with acquired STIR.

MATERIALS AND METHODS:

From a multicenter, multiscanner data base of 328 clinical cases, a nonreader neuroradiologist randomly selected 110 spine MR imaging studies in 93 patients (sagittal T1, T2, and STIR) and classified them into 5 categories of disease and healthy. A DICOM-based deep learning application generated a synthetically created STIR series from the sagittal T1 and T2 images. Five radiologists (3 neuroradiologists, 1 musculoskeletal radiologist, and 1 general radiologist) rated the STIR quality and classified disease pathology (study 1, n = 80). They then assessed the presence or absence of findings typically evaluated with STIR in patients with trauma (study 2, n = 30). The readers evaluated studies with either acquired STIR or synthetically created STIR in a blinded and randomized fashion with a 1-month washout period. The interchangeability of acquired STIR and synthetically created STIR was assessed using a noninferiority threshold of 10%.

RESULTS:

For classification, there was a decrease in interreader agreement expected by randomly introducing synthetically created STIR of 3.23%. For trauma, there was an overall increase in interreader agreement by +1.9%. The lower bound of confidence for both exceeded the noninferiority threshold, indicating interchangeability of synthetically created STIR with acquired STIR. Both the Wilcoxon signed-rank and t tests showed higher image-quality scores for synthetically created STIR over acquired STIR (P < .0001).

CONCLUSIONS:

Synthetically created STIR spine MR images were diagnostically interchangeable with acquired STIR, while providing significantly higher image quality, suggesting routine clinical practice potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
theverve完成签到,获得积分10
刚刚
科研通AI5应助sujinyu采纳,获得10
2秒前
kzkz完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
zhaozhao完成签到,获得积分10
2秒前
Wayne_Sun完成签到,获得积分10
2秒前
单薄铅笔完成签到,获得积分10
3秒前
姜姜完成签到,获得积分10
4秒前
雪白的傲薇完成签到 ,获得积分10
4秒前
搞怪的白竹完成签到,获得积分10
5秒前
小斌完成签到,获得积分10
8秒前
共享精神应助亲亲采纳,获得10
9秒前
9秒前
Hello应助单薄铅笔采纳,获得30
10秒前
开心便当完成签到,获得积分10
10秒前
现代雁桃发布了新的文献求助10
10秒前
hkh发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
温暖大米完成签到 ,获得积分10
13秒前
科研小白应助开心便当采纳,获得10
14秒前
研研研完成签到,获得积分10
15秒前
缓慢雅青完成签到 ,获得积分10
15秒前
蔡从安完成签到,获得积分20
16秒前
Chenzhs完成签到,获得积分10
17秒前
17秒前
yyy发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
生而追梦不止完成签到,获得积分10
20秒前
薯条狂热爱好者完成签到 ,获得积分10
20秒前
zwk完成签到,获得积分20
20秒前
铂铑钯钌完成签到,获得积分10
21秒前
研友_nEoEy8完成签到,获得积分10
21秒前
Alicia完成签到 ,获得积分10
21秒前
hkh完成签到,获得积分10
23秒前
Sophie完成签到 ,获得积分10
23秒前
天意完成签到,获得积分10
23秒前
23秒前
emilybei发布了新的文献求助10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666539
求助须知:如何正确求助?哪些是违规求助? 3225542
关于积分的说明 9763464
捐赠科研通 2935392
什么是DOI,文献DOI怎么找? 1607657
邀请新用户注册赠送积分活动 759294
科研通“疑难数据库(出版商)”最低求助积分说明 735214