Topology optimization of heat sink in turbulent natural convection using k-ω turbulent model

格拉肖夫数 热导率 湍流 自然对流 传热 热力学 拓扑优化 机械 材料科学 努塞尔数 拓扑(电路) 物理 数学 雷诺数 有限元法 组合数学
作者
Bin Zhang,Jihong Zhu,Longfei Gong,Kaixun Jia,Limin Gao
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:118: 272-302 被引量:4
标识
DOI:10.1016/j.apm.2023.01.028
摘要

The geometric structure of two-dimensional (2-D) heat sinks cooled by turbulent natural convection is optimized using a density-based topology optimization approach. The governing equations are the coupled equations of the k-ω turbulent equation, which is one type of the Reynolds-Averaged Navier-Stokes (RANS) equations, and the thermal convection-diffusion equation based on the Bousinessq approximation. In order to facilitate topology optimization, we make some modifications to the original governing equations to control the fluid/solid distribution by introducing a material density as the design variable. Specifically, several penalization terms are added to the original k-ω turbulent model for immersing the solid material, and the thermophysical properties are interpolated to obtain a generalized thermal equation suitable for both the fluid and solid materials. During the optimization process, the design variable is updated according to the gradient information obtained through adjoint-based sensitivity analysis. In numerical examples, the effects of the Grashof number and the solid thermal conductivity on optimal configurations are, respectively, investigated for two types of heat sinks. The numerical results indicate that the Grashof numbers and the solid thermal conductivity can significantly affect the optimal results; the flow channels will become narrower to accommodate the flow and heat transfer conditions with the increase of the Grashof number; and the design characteristics and heat transfer performance vary greatly for increasing the solid thermal conductivity when the conductivity is low, while at the case of high conductivity, this variation slows down obviously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亚婷儿完成签到,获得积分10
1秒前
AQ完成签到,获得积分10
1秒前
YufanZhang发布了新的文献求助10
2秒前
2秒前
迅速的巧曼完成签到 ,获得积分10
2秒前
2秒前
2秒前
专注无声发布了新的文献求助10
3秒前
饱满夏瑶发布了新的文献求助10
3秒前
Pursuit发布了新的文献求助10
3秒前
华仔应助ying采纳,获得10
4秒前
4秒前
解语花发布了新的文献求助10
4秒前
醒醒发布了新的文献求助10
4秒前
浮游应助ldroc采纳,获得10
4秒前
Yang2完成签到,获得积分10
5秒前
beyond发布了新的文献求助10
5秒前
5秒前
Lucas应助Mystic采纳,获得10
6秒前
6秒前
浮游应助金博洋采纳,获得18
6秒前
6秒前
天天快乐应助哈哈王采纳,获得10
7秒前
7秒前
啦啦啦啦啦啦啦完成签到,获得积分10
7秒前
7秒前
呓语完成签到,获得积分10
8秒前
上官若男应助csy采纳,获得10
8秒前
可爱的雨柏完成签到,获得积分10
9秒前
蛙趣完成签到,获得积分10
9秒前
9秒前
果果完成签到,获得积分10
9秒前
yanwowo完成签到,获得积分10
9秒前
10秒前
星星完成签到,获得积分10
10秒前
10秒前
laojian完成签到 ,获得积分10
10秒前
李健应助深情傲柔采纳,获得10
11秒前
栓Q发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978