Monitoring black tea fermentation quality by intelligent sensors: Comparison of image, e-nose and data fusion

人工智能 电子鼻 偏最小二乘回归 主成分分析 模式识别(心理学) 支持向量机 数学 随机森林 计算机科学 统计
作者
Qiaoyi Zhou,Zhenhua Dai,Feihu Song,Zhenfeng Li,Chunfang Song,Caijin Ling
出处
期刊:Food bioscience [Elsevier BV]
卷期号:52: 102454-102454 被引量:28
标识
DOI:10.1016/j.fbio.2023.102454
摘要

To scientifically and objectively monitor the fermentation quality of black tea, a computer vision system (CVS) and electronic nose (e-nose) were employed to analyze the black tea image and odor eigenvalues of Yinghong No. 9 black tea. First, the variation trends of tea polyphenols, volatile substances, image eigenvalues and odor eigenvalues with the extension of fermentation time were analyzed, and the fermentation process was categorized into three stages for classification. Second, principal component analysis (PCA) was employed on the image and odor eigenvalues obtained by CVS and e-nose. Partial least squares discriminant analysis (PLS-DA) was performed on 117 volatile components, and 51 differential volatiles were screened out based on variable importance in projection (VIP ≥1) and one-way analysis of variance (P < 0.05), including geraniol, linalool, nerolidol, and α-ionone. Then, image features and odor features are fused by using a data fusion strategy. Finally, the image, smell and fusion information were combined with random forest (RF), K-nearest neighbor (KNN) and support vector machine (SVM) to establish the classification models of different fermentation stages and to compare them. The results show that the feature-level fusion strategy integrating the SVM was the most efficient approach, with classification accuracy rates of 100% for the training sets and 95.6% for the testing sets. The performance of Support Vector Regression (SVR) prediction models for tea polyphenol content based on feature-level fusion data outperformed data-level models (Rc, RMSEC, Rp and RMSEP of 0.96, 0.48 mg/g, 0.94, 0.6 mg/g).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无私的芹应助山河入梦来采纳,获得10
2秒前
慕青应助banbieshenlu采纳,获得10
2秒前
2秒前
2秒前
3秒前
小二郎应助科研yuan小白采纳,获得10
3秒前
3秒前
yyy发布了新的文献求助10
4秒前
4秒前
4秒前
zhshyhy完成签到,获得积分10
5秒前
5秒前
挖掘机应助斯奈克采纳,获得200
5秒前
甜味白开水完成签到,获得积分10
6秒前
研友_ngX12Z发布了新的文献求助10
6秒前
花鸟风月evereo完成签到,获得积分10
6秒前
菠萝炒饭应助王三采纳,获得10
7秒前
pppy发布了新的文献求助10
7秒前
郭大王发布了新的文献求助10
7秒前
煜琪发布了新的文献求助10
8秒前
8秒前
crethy完成签到,获得积分10
8秒前
Henry发布了新的文献求助10
8秒前
Akim应助李明采纳,获得10
9秒前
tdd完成签到,获得积分10
9秒前
无私的芹应助黄俊采纳,获得10
9秒前
bofu发布了新的文献求助30
10秒前
www发布了新的文献求助10
10秒前
Owen应助youlingduxiu采纳,获得30
10秒前
叶文言发布了新的文献求助10
10秒前
Avery完成签到 ,获得积分10
10秒前
10秒前
cTiyAmo完成签到,获得积分10
10秒前
11秒前
科研狗完成签到,获得积分10
11秒前
未命名发布了新的文献求助20
12秒前
13秒前
13秒前
Jasper应助张一二二二采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180