Monitoring black tea fermentation quality by intelligent sensors: Comparison of image, e-nose and data fusion

人工智能 电子鼻 偏最小二乘回归 主成分分析 模式识别(心理学) 支持向量机 数学 随机森林 计算机科学 统计
作者
Qiaoyi Zhou,Zhenhua Dai,Feihu Song,Zhenfeng Li,Chao Song,Caijin Ling
出处
期刊:Food bioscience [Elsevier]
卷期号:52: 102454-102454 被引量:7
标识
DOI:10.1016/j.fbio.2023.102454
摘要

To scientifically and objectively monitor the fermentation quality of black tea, a computer vision system (CVS) and electronic nose (e-nose) were employed to analyze the black tea image and odor eigenvalues of Yinghong No. 9 black tea. First, the variation trends of tea polyphenols, volatile substances, image eigenvalues and odor eigenvalues with the extension of fermentation time were analyzed, and the fermentation process was categorized into three stages for classification. Second, principal component analysis (PCA) was employed on the image and odor eigenvalues obtained by CVS and e-nose. Partial least squares discriminant analysis (PLS-DA) was performed on 117 volatile components, and 51 differential volatiles were screened out based on variable importance in projection (VIP ≥1) and one-way analysis of variance (P < 0.05), including geraniol, linalool, nerolidol, and α-ionone. Then, image features and odor features are fused by using a data fusion strategy. Finally, the image, smell and fusion information were combined with random forest (RF), K-nearest neighbor (KNN) and support vector machine (SVM) to establish the classification models of different fermentation stages and to compare them. The results show that the feature-level fusion strategy integrating the SVM was the most efficient approach, with classification accuracy rates of 100% for the training sets and 95.6% for the testing sets. The performance of Support Vector Regression (SVR) prediction models for tea polyphenol content based on feature-level fusion data outperformed data-level models (Rc, RMSEC, Rp and RMSEP of 0.96, 0.48 mg/g, 0.94, 0.6 mg/g).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白昼の月完成签到 ,获得积分0
3秒前
武工队队长石青山完成签到,获得积分10
3秒前
迷人妙晴关注了科研通微信公众号
3秒前
小二郎应助差劲先生采纳,获得10
6秒前
传奇3应助Swear采纳,获得10
6秒前
Owen应助小王同学采纳,获得10
7秒前
8秒前
很厉害的黄桃关注了科研通微信公众号
9秒前
LHZ发布了新的文献求助10
10秒前
fute158发布了新的文献求助10
12秒前
ll完成签到,获得积分10
13秒前
13秒前
13秒前
lily发布了新的文献求助10
15秒前
不配.给糖炒栗子的求助进行了留言
15秒前
yangjinru完成签到 ,获得积分10
15秒前
不配.应助合适的不言采纳,获得10
15秒前
16秒前
XYWang完成签到,获得积分10
16秒前
yongyuyu发布了新的文献求助10
17秒前
ad无人完成签到,获得积分10
17秒前
深情安青应助炙热的忆丹采纳,获得10
18秒前
黄大完成签到 ,获得积分10
19秒前
always完成签到 ,获得积分10
19秒前
pluto应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得30
20秒前
情怀应助科研通管家采纳,获得30
20秒前
爆米花应助科研通管家采纳,获得20
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
pluto应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
薰硝壤应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101045
求助须知:如何正确求助?哪些是违规求助? 2752482
关于积分的说明 7619391
捐赠科研通 2404697
什么是DOI,文献DOI怎么找? 1275923
科研通“疑难数据库(出版商)”最低求助积分说明 616661
版权声明 599058