Strategies for predicting soil organic matter in the field using the Chinese Vis-NIR soil spectral library

原位 偏最小二乘回归 谱线 土壤科学 比例(比率) 土壤有机质 生物系统 化学 环境科学 数学 土壤水分 统计 地图学 物理 生物 天文 地理 有机化学
作者
Meihua Yang,Songchao Chen,Dongyun Xu,Yongsheng Hong,Shuo Li,Jie Peng,Wenjun Ji,Guo Xi,Xiaomin Zhao,Zhou Shi
出处
期刊:Geoderma [Elsevier]
卷期号:433: 116461-116461 被引量:11
标识
DOI:10.1016/j.geoderma.2023.116461
摘要

The large-scale soil spectral library (SSL) can provide abundant information for predicting soil properties at a local scale, especially in places lacking data. However, since all the existing large-scale SSLs only contain dry spectra recorded under laboratory conditions, the challenge remains in using SSL for predicting soil information using in situ soil spectra. Previous studies have focused on the methods of transforming in situ spectra to dry spectra when using SSLs, while few studies have compared which strategies are optimal in predicting soil properties. To determine the optimal strategies for predicting soil organic matter (SOM) from an area not located in the archived Chinese Soil Spectral Library (CSSL), we investigated the prediction accuracy of memory-based learning (MBL) using spectra transformed by external parameter orthogonalization (EPO) on the CSSL (MBL_EPO) and on the CSSL spiked with subset samples selected by the conditioned Latin hypercube (cLH) algorithm (MBL_EPO_spiking) and using the data from CSSL spiked directedly by the subset in situ samples (MBL_wet_spiking). We also evaluated the prediction accuracy of the in situ and dry spectra using the selected subset and the partial least squares regression (PLSR) model directly. The results showed that the mean squared Euclidean distance (msd) calculated from spectra was an optimal indicator for selecting the representative samples for both the laboratory and in situ conditions. When only 20 samples with both in situ and dry spectra are available to predict SOM, MBL_EPO_spiking is suggested; otherwise, MBL_wet_spiking with the spiking of in situ spectra determined by the smallest msd is optimal. Our findings pave the way for efficient SOM prediction in situ by integrating a large-scale SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
testmanfuxk完成签到,获得积分10
1秒前
无花果应助幻梦境采纳,获得10
1秒前
1秒前
1秒前
2秒前
大模型应助亦玉采纳,获得10
2秒前
空2完成签到 ,获得积分0
2秒前
脑洞疼应助煎饼采纳,获得10
2秒前
yy发布了新的文献求助10
3秒前
李爱国应助haohao采纳,获得10
3秒前
3秒前
Gagaga发布了新的文献求助10
3秒前
顺心乞发布了新的文献求助10
3秒前
粉色发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
宁静致远发布了新的文献求助30
4秒前
汪凤完成签到,获得积分10
4秒前
我是老大应助橙子采纳,获得10
4秒前
5秒前
5秒前
无奈皮卡丘完成签到,获得积分10
5秒前
5秒前
甜甜茈完成签到,获得积分10
5秒前
森银成辉发布了新的文献求助10
5秒前
小超要努力完成签到,获得积分10
6秒前
6秒前
11发布了新的文献求助10
6秒前
ALL发布了新的文献求助10
7秒前
7秒前
玄学大哥完成签到,获得积分10
7秒前
斯文败类应助快乐的寄容采纳,获得10
8秒前
机智的灵寒关注了科研通微信公众号
8秒前
Mess完成签到,获得积分10
8秒前
单纯的嘉懿完成签到,获得积分10
8秒前
8秒前
killkitty发布了新的文献求助10
9秒前
爱笑鸡翅完成签到 ,获得积分10
9秒前
9秒前
盛天虹发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410362
求助须知:如何正确求助?哪些是违规求助? 4527799
关于积分的说明 14113081
捐赠科研通 4442420
什么是DOI,文献DOI怎么找? 2437935
邀请新用户注册赠送积分活动 1429942
关于科研通互助平台的介绍 1407876