Strategies for predicting soil organic matter in the field using the Chinese Vis-NIR soil spectral library

原位 偏最小二乘回归 谱线 土壤科学 比例(比率) 土壤有机质 生物系统 化学 环境科学 数学 土壤水分 统计 地图学 物理 生物 天文 地理 有机化学
作者
Meihua Yang,Songchao Chen,Dongyun Xu,Yongsheng Hong,Shuo Li,Jie Peng,Wenjun Ji,Guo Xi,Xiaomin Zhao,Zhou Shi
出处
期刊:Geoderma [Elsevier BV]
卷期号:433: 116461-116461 被引量:11
标识
DOI:10.1016/j.geoderma.2023.116461
摘要

The large-scale soil spectral library (SSL) can provide abundant information for predicting soil properties at a local scale, especially in places lacking data. However, since all the existing large-scale SSLs only contain dry spectra recorded under laboratory conditions, the challenge remains in using SSL for predicting soil information using in situ soil spectra. Previous studies have focused on the methods of transforming in situ spectra to dry spectra when using SSLs, while few studies have compared which strategies are optimal in predicting soil properties. To determine the optimal strategies for predicting soil organic matter (SOM) from an area not located in the archived Chinese Soil Spectral Library (CSSL), we investigated the prediction accuracy of memory-based learning (MBL) using spectra transformed by external parameter orthogonalization (EPO) on the CSSL (MBL_EPO) and on the CSSL spiked with subset samples selected by the conditioned Latin hypercube (cLH) algorithm (MBL_EPO_spiking) and using the data from CSSL spiked directedly by the subset in situ samples (MBL_wet_spiking). We also evaluated the prediction accuracy of the in situ and dry spectra using the selected subset and the partial least squares regression (PLSR) model directly. The results showed that the mean squared Euclidean distance (msd) calculated from spectra was an optimal indicator for selecting the representative samples for both the laboratory and in situ conditions. When only 20 samples with both in situ and dry spectra are available to predict SOM, MBL_EPO_spiking is suggested; otherwise, MBL_wet_spiking with the spiking of in situ spectra determined by the smallest msd is optimal. Our findings pave the way for efficient SOM prediction in situ by integrating a large-scale SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玖玖救捌壹完成签到 ,获得积分20
刚刚
刚刚
1秒前
ping发布了新的文献求助10
1秒前
yang发布了新的文献求助10
1秒前
2秒前
虚心的夏青完成签到,获得积分10
2秒前
爱狗先森完成签到,获得积分10
2秒前
2秒前
李健的小迷弟应助Cora采纳,获得10
2秒前
大个应助haha采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
fox199753206完成签到,获得积分10
3秒前
3秒前
小王很哇塞完成签到 ,获得积分20
3秒前
Owen应助lzz采纳,获得10
3秒前
小二郎应助chifan采纳,获得10
4秒前
子车茗应助xiaosongmufaeins采纳,获得20
5秒前
所所应助Satan采纳,获得10
5秒前
科研通AI5应助生动的翠容采纳,获得10
5秒前
神猪完成签到,获得积分10
5秒前
zuhayr发布了新的文献求助10
5秒前
123131发布了新的文献求助10
6秒前
6秒前
6秒前
糕冷草莓发布了新的文献求助10
6秒前
WJW发布了新的文献求助10
6秒前
mzhmhy完成签到,获得积分10
6秒前
852应助沉默的莞采纳,获得20
7秒前
JamesPei应助闪闪如南采纳,获得10
7秒前
Jasper应助DD采纳,获得10
8秒前
8秒前
SciGPT应助123131采纳,获得10
9秒前
饱满帽子发布了新的文献求助10
9秒前
南楼归雁发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
扶风完成签到,获得积分10
11秒前
手中的樱花完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437