Strategies for predicting soil organic matter in the field using the Chinese Vis-NIR soil spectral library

原位 偏最小二乘回归 谱线 土壤科学 比例(比率) 土壤有机质 生物系统 化学 环境科学 数学 土壤水分 统计 地图学 物理 生物 天文 有机化学 地理
作者
Meihua Yang,Songchao Chen,Dongyun Xu,Yongsheng Hong,Shuo Li,Jie Peng,Wenjun Ji,Guo Xi,Xiaomin Zhao,Zhou Shi
出处
期刊:Geoderma [Elsevier]
卷期号:433: 116461-116461 被引量:11
标识
DOI:10.1016/j.geoderma.2023.116461
摘要

The large-scale soil spectral library (SSL) can provide abundant information for predicting soil properties at a local scale, especially in places lacking data. However, since all the existing large-scale SSLs only contain dry spectra recorded under laboratory conditions, the challenge remains in using SSL for predicting soil information using in situ soil spectra. Previous studies have focused on the methods of transforming in situ spectra to dry spectra when using SSLs, while few studies have compared which strategies are optimal in predicting soil properties. To determine the optimal strategies for predicting soil organic matter (SOM) from an area not located in the archived Chinese Soil Spectral Library (CSSL), we investigated the prediction accuracy of memory-based learning (MBL) using spectra transformed by external parameter orthogonalization (EPO) on the CSSL (MBL_EPO) and on the CSSL spiked with subset samples selected by the conditioned Latin hypercube (cLH) algorithm (MBL_EPO_spiking) and using the data from CSSL spiked directedly by the subset in situ samples (MBL_wet_spiking). We also evaluated the prediction accuracy of the in situ and dry spectra using the selected subset and the partial least squares regression (PLSR) model directly. The results showed that the mean squared Euclidean distance (msd) calculated from spectra was an optimal indicator for selecting the representative samples for both the laboratory and in situ conditions. When only 20 samples with both in situ and dry spectra are available to predict SOM, MBL_EPO_spiking is suggested; otherwise, MBL_wet_spiking with the spiking of in situ spectra determined by the smallest msd is optimal. Our findings pave the way for efficient SOM prediction in situ by integrating a large-scale SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyfdqms完成签到,获得积分10
1秒前
852应助xiaoxiao采纳,获得10
1秒前
咩咩羊发布了新的文献求助10
1秒前
顾矜应助火星上的代桃采纳,获得10
1秒前
enchanted发布了新的文献求助10
2秒前
clueless完成签到,获得积分10
5秒前
粥粥粥粥粥完成签到,获得积分10
5秒前
图里琛完成签到 ,获得积分10
7秒前
大个应助善良的英姑采纳,获得10
7秒前
7秒前
7秒前
8秒前
10秒前
10秒前
小白白完成签到,获得积分10
10秒前
坚定迎天发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
霸气向秋发布了新的文献求助10
13秒前
咩咩羊完成签到,获得积分10
13秒前
爆米花应助enchanted采纳,获得10
14秒前
科研通AI2S应助五十一采纳,获得10
14秒前
15秒前
15秒前
16秒前
17秒前
雨寒完成签到,获得积分10
17秒前
奈落发布了新的文献求助10
18秒前
格格完成签到,获得积分10
18秒前
坚定迎天完成签到,获得积分10
19秒前
磕盐民工完成签到,获得积分10
19秒前
19秒前
小鱼鱼发布了新的文献求助10
20秒前
雨寒发布了新的文献求助10
20秒前
20秒前
mm应助格兰兔米兔采纳,获得10
21秒前
霸气向秋完成签到,获得积分10
22秒前
巧克力饼干完成签到,获得积分10
22秒前
shelly完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313894
求助须知:如何正确求助?哪些是违规求助? 2946248
关于积分的说明 8529066
捐赠科研通 2621808
什么是DOI,文献DOI怎么找? 1434115
科研通“疑难数据库(出版商)”最低求助积分说明 665131
邀请新用户注册赠送积分活动 650738