Strategies for predicting soil organic matter in the field using the Chinese Vis-NIR soil spectral library

原位 偏最小二乘回归 谱线 土壤科学 比例(比率) 土壤有机质 生物系统 化学 环境科学 数学 土壤水分 统计 地图学 物理 生物 天文 地理 有机化学
作者
Meihua Yang,Songchao Chen,Dongyun Xu,Yongsheng Hong,Shuo Li,Jie Peng,Wenjun Ji,Guo Xi,Xiaomin Zhao,Zhou Shi
出处
期刊:Geoderma [Elsevier]
卷期号:433: 116461-116461 被引量:11
标识
DOI:10.1016/j.geoderma.2023.116461
摘要

The large-scale soil spectral library (SSL) can provide abundant information for predicting soil properties at a local scale, especially in places lacking data. However, since all the existing large-scale SSLs only contain dry spectra recorded under laboratory conditions, the challenge remains in using SSL for predicting soil information using in situ soil spectra. Previous studies have focused on the methods of transforming in situ spectra to dry spectra when using SSLs, while few studies have compared which strategies are optimal in predicting soil properties. To determine the optimal strategies for predicting soil organic matter (SOM) from an area not located in the archived Chinese Soil Spectral Library (CSSL), we investigated the prediction accuracy of memory-based learning (MBL) using spectra transformed by external parameter orthogonalization (EPO) on the CSSL (MBL_EPO) and on the CSSL spiked with subset samples selected by the conditioned Latin hypercube (cLH) algorithm (MBL_EPO_spiking) and using the data from CSSL spiked directedly by the subset in situ samples (MBL_wet_spiking). We also evaluated the prediction accuracy of the in situ and dry spectra using the selected subset and the partial least squares regression (PLSR) model directly. The results showed that the mean squared Euclidean distance (msd) calculated from spectra was an optimal indicator for selecting the representative samples for both the laboratory and in situ conditions. When only 20 samples with both in situ and dry spectra are available to predict SOM, MBL_EPO_spiking is suggested; otherwise, MBL_wet_spiking with the spiking of in situ spectra determined by the smallest msd is optimal. Our findings pave the way for efficient SOM prediction in situ by integrating a large-scale SSL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月皎完成签到,获得积分10
刚刚
英姑应助自由采纳,获得10
1秒前
友好怜珊发布了新的文献求助10
1秒前
李健应助岛err采纳,获得10
1秒前
科研通AI2S应助coco采纳,获得10
2秒前
丘比特应助谢灵运采纳,获得10
2秒前
健忘不言发布了新的文献求助10
2秒前
Margot发布了新的文献求助10
2秒前
快冲冲冲发布了新的文献求助10
2秒前
我想静静发布了新的文献求助100
2秒前
3秒前
3秒前
ding应助调皮的勒采纳,获得10
3秒前
科研通AI6应助重要的蓝血采纳,获得10
3秒前
3秒前
3秒前
11完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
无限尔云完成签到,获得积分10
4秒前
高数数完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
充电宝应助阿瓒采纳,获得10
6秒前
燕不留声发布了新的文献求助10
7秒前
7秒前
ZeSheng完成签到,获得积分10
7秒前
打打应助汤飞柏采纳,获得10
8秒前
8秒前
匆匆而过发布了新的文献求助10
8秒前
8秒前
ximi发布了新的文献求助10
8秒前
9秒前
酷波er应助lzs123采纳,获得10
9秒前
10秒前
科研通AI6应助雪白的傥采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869