甲状腺
肠道菌群
失调
内科学
激素
内分泌学
医学
生物
免疫学
作者
Aline C. Fenneman,Eveline Bruinstroop,Max Nieuwdorp,Anne H. van der Spek,Anita Boelen
出处
期刊:Thyroid
[Mary Ann Liebert]
日期:2022-11-02
卷期号:33 (1): 32-44
被引量:30
标识
DOI:10.1089/thy.2022.0491
摘要
Background: The gut is a target organ of thyroid hormone (TH) that exerts its action via the nuclear thyroid hormone receptor α1 (TRα1) expressed in intestinal epithelial cells. THs are partially metabolized via hepatic sulfation and glucuronidation, resulting in the production of conjugated iodothyronines. Gut microbiota play an important role in peripheral TH metabolism as they produce and secrete enzymes with deconjugation activity (β-glucuronidase and sulfatase), via which TH can re-enter the enterohepatic circulation. Summary: Intestinal epithelium homeostasis (the finely tuned balance between cell proliferation and differentiation) is controlled by the crosstalk between triiodothyronine and TRα1 and the presence of specific TH transporters and TH-activating and -inactivating enzymes. Patients and experimental murine models with a dominant-negative mutation in the TRα exhibit gross abnormalities in the morphology of the intestinal epithelium and suffer from severe symptoms of a dysfunctional gastrointestinal tract. Over the past decade, gut microbiota has been identified as an essential factor in health and disease, depending on its compositional and functional profile. This has led to a renewed interest in the so-called gut-thyroid axis. Disruption of gut microbial homeostasis (dysbiosis) is associated with autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis, Graves' disease, and Graves' orbitopathy. These studies reviewed here provide new insights into the gut microbiota roles in thyroid disease pathogenesis and may be an initial step toward microbiota-based therapies in AITD. However, it should be noted that cause-effect mechanisms remain to be proven, for which prospective cohort studies, randomized clinical trials, and experimental studies are needed. Conclusion: This review aims at providing a comprehensive insight into the interplay between TH metabolism and gut homeostasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI