Optimizing hydrogen ad/desorption of Mg-based hydrides for energy-storage applications

脱氢 氢气储存 材料科学 氢化物 氢化镁 储能 催化作用 氢燃料 解吸 纳米技术 工艺工程 化学工程 热力学 化学 冶金 有机化学 合金 工程类 吸附 功率(物理) 物理
作者
Zeng-Yi Li,Yujia Sun,Chenchen Zhang,Sheng Wei,Li Zhao,Julan Zeng,Z. Q. Cao,Yongjin Zou,Hailiang Chu,Fen Xu,Lixian Sun,Hongge Pan
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:141: 221-235 被引量:40
标识
DOI:10.1016/j.jmst.2022.08.047
摘要

Hydrogen energy is expected to be an “ideal fuel” in the era of decarbonization. The discovery, development, and modification of high-performance hydrogen storage materials are the keys to the future development of solid-state hydrogen storage and hydrogen energy utilization. Magnesium hydride (MgH2), with its high hydrogen storage capacity, abundant natural reserves, and environmental friendliness, has been extensively researched. Herein, we briefly summarize the typical structure and hydrogenation/dehydrogenation reaction mechanism of MgH2 and provide a comprehensive overview of strategies to effectively tune the thermodynamics and kinetics of Mg-based materials, such as alloying, nanosizing, the introduction of additives, and composite modification. With substantial efforts, great achievements have been achieved, such as lower absorption/desorption temperatures and better cycling stability. Nonetheless, some pivotal issues remain to be addressed, such as unfavorable hydrogenation/dehydrogenation factors, harsh conditions, slow kinetics, incomplete dehydrogenation, low hydrogen purity, expensive catalysts, and a lack of valid exploration of mechanisms in the hydrogenation/dehydrogenation process. Lastly, some future development prospects of MgH2 in energy-efficient conversion and storage have been presented, including advanced manufacturing ways, stabilization of nanostructures, the introduction of additives combined with structural modification, and utilization of advanced characterization techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车半烟发布了新的文献求助10
1秒前
1秒前
烟花应助任性白云采纳,获得10
1秒前
乐乐应助朵乐doll采纳,获得10
2秒前
2秒前
李爱波发布了新的文献求助10
3秒前
3秒前
ayu完成签到,获得积分10
4秒前
QQ发布了新的文献求助10
4秒前
葛辉辉发布了新的文献求助10
4秒前
4秒前
4秒前
NexusExplorer应助椰椰芒芒采纳,获得10
4秒前
yzj发布了新的文献求助10
5秒前
大力的雪碧完成签到,获得积分20
6秒前
7秒前
汉堡包应助远方的大树采纳,获得10
7秒前
阿星捌发布了新的文献求助10
7秒前
8秒前
8秒前
老迟到的冰海完成签到,获得积分10
9秒前
9秒前
Lucas应助ayu采纳,获得10
9秒前
huhu完成签到,获得积分10
9秒前
10秒前
10秒前
妉甛完成签到,获得积分10
11秒前
852应助yjj采纳,获得10
13秒前
顾矜应助霍志美采纳,获得10
13秒前
djyu发布了新的文献求助10
14秒前
14秒前
闻屿完成签到,获得积分10
14秒前
14秒前
科研通AI5应助QQ采纳,获得10
14秒前
14秒前
YuLu发布了新的文献求助10
15秒前
宇文一发布了新的文献求助10
15秒前
xiaoju发布了新的文献求助10
15秒前
贰拾-2完成签到,获得积分10
15秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639