清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018

计算机科学 标杆管理 文档 水准点(测量) 数据科学 数据挖掘 过程(计算) 机器学习 推论 人工智能 大地测量学 操作系统 业务 营销 程序设计语言 地理
作者
Lisa Liu,Gints Engelen,Timothy Lynar,Daryl Essam,Wouter Joosen
标识
DOI:10.1109/cns56114.2022.9947235
摘要

Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
9秒前
10秒前
博弈完成签到 ,获得积分10
11秒前
Fei发布了新的文献求助10
12秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
知闲发布了新的文献求助10
27秒前
两个榴莲完成签到,获得积分0
30秒前
33秒前
36秒前
40秒前
43秒前
45秒前
Gloam发布了新的文献求助10
45秒前
45秒前
星辰大海应助王雅采纳,获得10
49秒前
量子星尘发布了新的文献求助10
52秒前
Gloam完成签到,获得积分20
55秒前
56秒前
耀健完成签到,获得积分10
1分钟前
1分钟前
Gloam关注了科研通微信公众号
1分钟前
1分钟前
快乐的素完成签到 ,获得积分10
1分钟前
云书完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
在水一方应助知闲采纳,获得10
1分钟前
1分钟前
LING发布了新的文献求助10
1分钟前
1分钟前
Fei完成签到,获得积分10
1分钟前
1分钟前
1分钟前
灵巧延恶发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688129
求助须知:如何正确求助?哪些是违规求助? 5063718
关于积分的说明 15193691
捐赠科研通 4846465
什么是DOI,文献DOI怎么找? 2598868
邀请新用户注册赠送积分活动 1550976
关于科研通互助平台的介绍 1509573