Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018

计算机科学 标杆管理 文档 水准点(测量) 数据科学 数据挖掘 过程(计算) 机器学习 推论 人工智能 大地测量学 操作系统 业务 营销 程序设计语言 地理
作者
Lisa Liu,Gints Engelen,Timothy Lynar,Daryl Essam,Wouter Joosen
标识
DOI:10.1109/cns56114.2022.9947235
摘要

Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
875259完成签到,获得积分10
1秒前
1秒前
ding应助恩恩天天开心采纳,获得10
1秒前
打打应助现代的糖豆采纳,获得10
1秒前
科目三应助第七个星球采纳,获得10
1秒前
Sue完成签到 ,获得积分10
1秒前
英姑应助HEANZ采纳,获得10
1秒前
梧桐完成签到,获得积分10
1秒前
盒子完成签到,获得积分10
1秒前
Yuki发布了新的文献求助10
2秒前
tangzanwayne发布了新的文献求助10
2秒前
睡觉大王完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
精明的飞槐完成签到,获得积分10
3秒前
YUE完成签到,获得积分10
3秒前
xyy发布了新的文献求助10
3秒前
4秒前
4秒前
小二郎应助qiaoyun采纳,获得10
4秒前
shouyi886发布了新的文献求助10
5秒前
5秒前
安生发布了新的文献求助10
5秒前
875259发布了新的文献求助10
5秒前
香蕉觅云应助Sue采纳,获得10
5秒前
小马甲应助LG采纳,获得30
6秒前
6秒前
科研通AI2S应助Tooth7采纳,获得10
6秒前
朱小燕发布了新的文献求助10
6秒前
南吕十八发布了新的文献求助30
6秒前
liuchair发布了新的文献求助30
7秒前
gggggggdde完成签到,获得积分10
7秒前
yy发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
可爱的函函应助shipcap采纳,获得10
8秒前
bai发布了新的文献求助10
8秒前
醋灯笼完成签到,获得积分10
8秒前
白羊完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894