Transductive meta-learning with enhanced feature ensemble for few-shot semantic segmentation

计算机科学 人工智能 分割 特征(语言学) 集成学习 弹丸 模式识别(心理学) 语义特征 自然语言处理 机器学习 化学 哲学 语言学 有机化学
作者
Amin Karimi,Charalambos Poullis
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-54640-6
摘要

Abstract This paper addresses few-shot semantic segmentation and proposes a novel transductive end-to-end method that overcomes three key problems affecting performance. First, we present a novel ensemble of visual features learned from pretrained classification and semantic segmentation networks with the same architecture. Our approach leverages the varying discriminative power of these networks, resulting in rich and diverse visual features that are more informative than a pretrained classification backbone that is not optimized for dense pixel-wise classification tasks used in most state-of-the-art methods. Secondly, the pretrained semantic segmentation network serves as a base class extractor, which effectively mitigates false positives that occur during inference time and are caused by base objects other than the object of interest. Thirdly, a two-step segmentation approach using transductive meta-learning is presented to address the episodes with poor similarity between the support and query images. The proposed transductive meta-learning method addresses the prediction by first learning the relationship between labeled and unlabeled data points with matching support foreground to query features (intra-class similarity) and then applying this knowledge to predict on the unlabeled query image (intra-object similarity), which simultaneously learns propagation and false positive suppression. To evaluate our method, we performed experiments on benchmark datasets, and the results demonstrate significant improvement with minimal trainable parameters of 2.98 M . Specifically, using Resnet-101, we achieve state-of-the-art performance for both 1-shot and 5-shot Pascal- $$5^{i}$$ 5 i , as well as for 1-shot and 5-shot COCO- $$20^{i}$$ 20 i .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Ann采纳,获得10
刚刚
spirit发布了新的文献求助10
3秒前
蒋丞发布了新的文献求助10
3秒前
大豆终结者完成签到,获得积分10
4秒前
5秒前
明亮妙菱完成签到,获得积分10
6秒前
7秒前
岳凯发布了新的文献求助10
9秒前
爱撒娇的妙竹完成签到,获得积分10
9秒前
李123发布了新的文献求助10
9秒前
sysxxx完成签到,获得积分10
10秒前
12秒前
12秒前
zg完成签到,获得积分10
13秒前
疼痛诊疗发布了新的文献求助20
13秒前
李健的小迷弟应助猕猴桃采纳,获得10
15秒前
科研通AI2S应助星沉静默采纳,获得10
16秒前
haha完成签到,获得积分10
16秒前
无私追命发布了新的文献求助30
23秒前
25秒前
29秒前
夏三岁关注了科研通微信公众号
29秒前
29秒前
xml完成签到,获得积分10
30秒前
王宇杰发布了新的文献求助10
30秒前
31秒前
炸毛娟发布了新的文献求助10
32秒前
石123完成签到,获得积分10
34秒前
35秒前
罗氏集团发布了新的文献求助10
35秒前
河狸王发布了新的文献求助10
36秒前
ED应助科研通管家采纳,获得10
37秒前
ED应助科研通管家采纳,获得10
37秒前
思源应助科研通管家采纳,获得20
37秒前
隐形曼青应助科研通管家采纳,获得20
37秒前
ED应助科研通管家采纳,获得10
37秒前
SYLH应助科研通管家采纳,获得20
37秒前
37秒前
SHAO应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652