亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transductive meta-learning with enhanced feature ensemble for few-shot semantic segmentation

计算机科学 人工智能 分割 特征(语言学) 集成学习 弹丸 模式识别(心理学) 语义特征 自然语言处理 机器学习 化学 哲学 语言学 有机化学
作者
Amin Karimi,Charalambos Poullis
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-54640-6
摘要

Abstract This paper addresses few-shot semantic segmentation and proposes a novel transductive end-to-end method that overcomes three key problems affecting performance. First, we present a novel ensemble of visual features learned from pretrained classification and semantic segmentation networks with the same architecture. Our approach leverages the varying discriminative power of these networks, resulting in rich and diverse visual features that are more informative than a pretrained classification backbone that is not optimized for dense pixel-wise classification tasks used in most state-of-the-art methods. Secondly, the pretrained semantic segmentation network serves as a base class extractor, which effectively mitigates false positives that occur during inference time and are caused by base objects other than the object of interest. Thirdly, a two-step segmentation approach using transductive meta-learning is presented to address the episodes with poor similarity between the support and query images. The proposed transductive meta-learning method addresses the prediction by first learning the relationship between labeled and unlabeled data points with matching support foreground to query features (intra-class similarity) and then applying this knowledge to predict on the unlabeled query image (intra-object similarity), which simultaneously learns propagation and false positive suppression. To evaluate our method, we performed experiments on benchmark datasets, and the results demonstrate significant improvement with minimal trainable parameters of 2.98 M . Specifically, using Resnet-101, we achieve state-of-the-art performance for both 1-shot and 5-shot Pascal- $$5^{i}$$ 5 i , as well as for 1-shot and 5-shot COCO- $$20^{i}$$ 20 i .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
46秒前
51秒前
54秒前
1分钟前
Orange应助冷艳的小懒虫采纳,获得10
1分钟前
wanci应助冷艳的小懒虫采纳,获得10
1分钟前
时尚的尔白完成签到,获得积分20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Johnny完成签到,获得积分10
1分钟前
Johnny发布了新的文献求助10
1分钟前
柠檬发布了新的文献求助10
1分钟前
1分钟前
1分钟前
月儿完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
2分钟前
小大夫完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
柠檬完成签到,获得积分10
2分钟前
lcdt完成签到,获得积分10
3分钟前
3分钟前
熬夜波比应助郭楠楠采纳,获得10
3分钟前
思源应助George采纳,获得10
4分钟前
天天快乐应助现实的乐天采纳,获得10
5分钟前
李爱国应助v哈哈采纳,获得10
5分钟前
酷酷海豚完成签到,获得积分10
5分钟前
5分钟前
v哈哈发布了新的文献求助10
5分钟前
lemon完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
赘婿应助lemon采纳,获得10
5分钟前
Swear完成签到 ,获得积分10
5分钟前
绾妤完成签到 ,获得积分0
6分钟前
wangfaqing942完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
George发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861758
关于积分的说明 15107715
捐赠科研通 4823032
什么是DOI,文献DOI怎么找? 2581870
邀请新用户注册赠送积分活动 1536034
关于科研通互助平台的介绍 1494399