Transductive meta-learning with enhanced feature ensemble for few-shot semantic segmentation

计算机科学 人工智能 分割 特征(语言学) 集成学习 弹丸 模式识别(心理学) 语义特征 自然语言处理 机器学习 化学 哲学 语言学 有机化学
作者
Amin Karimi,Charalambos Poullis
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-54640-6
摘要

Abstract This paper addresses few-shot semantic segmentation and proposes a novel transductive end-to-end method that overcomes three key problems affecting performance. First, we present a novel ensemble of visual features learned from pretrained classification and semantic segmentation networks with the same architecture. Our approach leverages the varying discriminative power of these networks, resulting in rich and diverse visual features that are more informative than a pretrained classification backbone that is not optimized for dense pixel-wise classification tasks used in most state-of-the-art methods. Secondly, the pretrained semantic segmentation network serves as a base class extractor, which effectively mitigates false positives that occur during inference time and are caused by base objects other than the object of interest. Thirdly, a two-step segmentation approach using transductive meta-learning is presented to address the episodes with poor similarity between the support and query images. The proposed transductive meta-learning method addresses the prediction by first learning the relationship between labeled and unlabeled data points with matching support foreground to query features (intra-class similarity) and then applying this knowledge to predict on the unlabeled query image (intra-object similarity), which simultaneously learns propagation and false positive suppression. To evaluate our method, we performed experiments on benchmark datasets, and the results demonstrate significant improvement with minimal trainable parameters of 2.98 M . Specifically, using Resnet-101, we achieve state-of-the-art performance for both 1-shot and 5-shot Pascal- $$5^{i}$$ 5 i , as well as for 1-shot and 5-shot COCO- $$20^{i}$$ 20 i .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arueliano完成签到,获得积分10
5秒前
清风完成签到 ,获得积分10
6秒前
兴奋小丸子完成签到,获得积分10
8秒前
世界末末日完成签到 ,获得积分10
9秒前
小马甲应助hello采纳,获得10
9秒前
默默灭绝完成签到 ,获得积分10
10秒前
莫慌完成签到 ,获得积分10
11秒前
发嗲的含芙完成签到,获得积分10
11秒前
Wonder完成签到,获得积分10
11秒前
13秒前
13秒前
gxmu6322完成签到,获得积分10
15秒前
熊雅完成签到,获得积分10
15秒前
15秒前
小z完成签到 ,获得积分10
15秒前
15919229415完成签到,获得积分10
16秒前
不能当饭吃完成签到,获得积分10
16秒前
传统的复天完成签到,获得积分10
17秒前
sin完成签到,获得积分10
18秒前
小邸发布了新的文献求助10
18秒前
18秒前
柠檬加盐发布了新的文献求助10
19秒前
今后应助xiuxiu125采纳,获得10
20秒前
乐观健柏完成签到,获得积分10
21秒前
WHB完成签到,获得积分10
22秒前
hello发布了新的文献求助10
22秒前
喜悦的天钰完成签到,获得积分10
24秒前
NexusExplorer应助柠檬加盐采纳,获得10
25秒前
yu完成签到 ,获得积分10
25秒前
eazin完成签到 ,获得积分10
26秒前
斯文败类应助dll采纳,获得10
27秒前
27秒前
邱佩群完成签到 ,获得积分10
29秒前
29秒前
hello完成签到,获得积分20
30秒前
犹豫的初丹完成签到,获得积分10
31秒前
Wang发布了新的文献求助10
31秒前
fan051500完成签到,获得积分10
32秒前
张天宝真的爱科研完成签到,获得积分10
33秒前
killy完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294178
求助须知:如何正确求助?哪些是违规求助? 4444140
关于积分的说明 13832167
捐赠科研通 4328118
什么是DOI,文献DOI怎么找? 2375950
邀请新用户注册赠送积分活动 1371278
关于科研通互助平台的介绍 1336386