Crafting high-strength and ductile powder metallurgy Ti6Al4V alloy with a multi-scale microstructure

材料科学 微观结构 钛合金 冶金 极限抗拉强度 等轴晶 合金 粉末冶金 延展性(地球科学) 针状的 加工硬化 复合材料 蠕动
作者
Fan Kuang,Yu Pan,Jianzhuo Sun,Yanjun Liu,Chengxin Lei,Xin Lu
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:892: 146054-146054 被引量:4
标识
DOI:10.1016/j.msea.2023.146054
摘要

In this work, a novel multi-scale microstructure of Ti6Al4V duplex alloy with nano-sized β particles was designed based on powder metallurgy. The common lamellar structure was carefully adjusted to reveal the complex effects of microstructure on mechanical properties. The ideal microstructure transforms into a composition dominated by sparse equiaxed primary α, lots of β-nanoprecipitates, and traces of secondary acicular α′ by heat treatment. The uniform nucleation of nano-sized β particles, driven by intragranular element concentration difference and local distortions, is a pivotal reason for high yield strength by dispersion strengthening. More phase boundaries also act as sustainable sources for geometrically necessary dislocations. An uncoordinated phase interface relationship from variant selection improves strain-hardening ability. The intragranular misorientation causes the value inhomogeneity of the Schmid factor in primary α, resulting in an auxiliary slip effect that benefits ductility. Therefore, the fabricated Ti6Al4V alloy displays an ultrahigh ultimate tensile strength of 1329 MPa, yield strength of 1223 MPa, and reasonably large elongation of 8.5 %, respectively. This work underscores the intricate interplay of microstructure evolution and deformation mechanisms in powder metallurgy duplex titanium alloys, offering valuable insights into enhancing the mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的白梦完成签到,获得积分20
刚刚
1秒前
鳗鱼灵寒发布了新的文献求助10
1秒前
潇洒的青完成签到,获得积分10
1秒前
眼里有光的阿墨完成签到 ,获得积分10
2秒前
2秒前
2秒前
GG完成签到,获得积分10
2秒前
隐形曼青应助garyaa采纳,获得10
2秒前
sweetbearm应助通~采纳,获得10
3秒前
锋feng完成签到 ,获得积分10
3秒前
Sofia完成签到,获得积分0
4秒前
4秒前
天人合一完成签到,获得积分0
5秒前
5秒前
所所应助MailkMonk采纳,获得10
5秒前
穆茹妖发布了新的文献求助10
6秒前
6秒前
7秒前
dddd完成签到,获得积分10
8秒前
zhui发布了新的文献求助10
8秒前
八十发布了新的文献求助10
9秒前
鹿芩完成签到,获得积分10
10秒前
luxxxiu完成签到,获得积分10
12秒前
顺顺关注了科研通微信公众号
12秒前
眼睛大老姆完成签到,获得积分10
12秒前
18275412695完成签到,获得积分10
12秒前
13秒前
科目三应助xjtu采纳,获得10
13秒前
14秒前
14秒前
在水一方应助热情芝麻采纳,获得10
14秒前
害羞的玉米完成签到,获得积分10
14秒前
16秒前
16秒前
李来仪发布了新的文献求助10
17秒前
英姑应助yangyong采纳,获得10
17秒前
17秒前
NexusExplorer应助通通通采纳,获得10
17秒前
liying完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794