HCLR-Net: Hybrid Contrastive Learning Regularization with Locally Randomized Perturbation for Underwater Image Enhancement

人工智能 水下 模式识别(心理学) 数学 正规化(语言学) 计算机科学 计算机视觉 地理 考古
作者
Jingchun Zhou,Jiaming Sun,Chongyi Li,Qiuping Jiang,Man Zhou,Kin‐Man Lam,Weishi Zhang,Xianping Fu
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:132 (10): 4132-4156 被引量:93
标识
DOI:10.1007/s11263-024-01987-y
摘要

Underwater image enhancement presents a significant challenge due to the complex and diverse underwater environments that result in severe degradation phenomena such as light absorption, scattering, and color distortion. More importantly, obtaining paired training data for these scenarios is a challenging task, which further hinders the generalization performance of enhancement models. To address these issues, we propose a novel approach, the Hybrid Contrastive Learning Regularization (HCLR-Net). Our method is built upon a distinctive hybrid contrastive learning regularization strategy that incorporates a unique methodology for constructing negative samples. This approach enables the network to develop a more robust sample distribution. Notably, we utilize non-paired data for both positive and negative samples, with negative samples are innovatively reconstructed using local patch perturbations. This strategy overcomes the constraints of relying solely on paired data, boosting the model's potential for generalization. The HCLR-Net also incorporates an Adaptive Hybrid Attention module and a Detail Repair Branch for effective feature extraction and texture detail restoration, respectively. Comprehensive experiments demonstrate the superiority of our method, which shows substantial improvements over several state-of-the-art methods in terms of quantitative metrics, significantly enhances the visual quality of underwater images, establishing its innovative and practical applicability. Our code is available at: https://github.com/zhoujingchun03/HCLR-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
刚刚
ffff发布了新的文献求助10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
1秒前
欣喜高丽应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Mic应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
小千应助科研通管家采纳,获得30
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Aurora应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
欣喜高丽应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
Gin完成签到,获得积分10
2秒前
爆米花应助简一采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
悦耳白山应助酒梅子采纳,获得10
3秒前
3秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743471
求助须知:如何正确求助?哪些是违规求助? 5414214
关于积分的说明 15347603
捐赠科研通 4884202
什么是DOI,文献DOI怎么找? 2625645
邀请新用户注册赠送积分活动 1574504
关于科研通互助平台的介绍 1531414