HCLR-Net: Hybrid Contrastive Learning Regularization with Locally Randomized Perturbation for Underwater Image Enhancement

人工智能 水下 模式识别(心理学) 数学 正规化(语言学) 计算机科学 计算机视觉 地理 考古
作者
Jingchun Zhou,Jiaming Sun,Chongyi Li,Qiuping Jiang,Man Zhou,Kin‐Man Lam,Weishi Zhang,Xianping Fu
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:132 (10): 4132-4156 被引量:127
标识
DOI:10.1007/s11263-024-01987-y
摘要

Underwater image enhancement presents a significant challenge due to the complex and diverse underwater environments that result in severe degradation phenomena such as light absorption, scattering, and color distortion. More importantly, obtaining paired training data for these scenarios is a challenging task, which further hinders the generalization performance of enhancement models. To address these issues, we propose a novel approach, the Hybrid Contrastive Learning Regularization (HCLR-Net). Our method is built upon a distinctive hybrid contrastive learning regularization strategy that incorporates a unique methodology for constructing negative samples. This approach enables the network to develop a more robust sample distribution. Notably, we utilize non-paired data for both positive and negative samples, with negative samples are innovatively reconstructed using local patch perturbations. This strategy overcomes the constraints of relying solely on paired data, boosting the model's potential for generalization. The HCLR-Net also incorporates an Adaptive Hybrid Attention module and a Detail Repair Branch for effective feature extraction and texture detail restoration, respectively. Comprehensive experiments demonstrate the superiority of our method, which shows substantial improvements over several state-of-the-art methods in terms of quantitative metrics, significantly enhances the visual quality of underwater images, establishing its innovative and practical applicability. Our code is available at: https://github.com/zhoujingchun03/HCLR-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双马尾小男生完成签到,获得积分10
4秒前
Dong完成签到 ,获得积分10
6秒前
天玄一刀完成签到,获得积分10
9秒前
双马尾小男生2完成签到,获得积分10
10秒前
大方的蓝完成签到 ,获得积分10
11秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
深情安青应助科研通管家采纳,获得10
17秒前
SPARK应助科研通管家采纳,获得10
17秒前
charint应助科研通管家采纳,获得10
17秒前
SPARK应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
SPARK应助科研通管家采纳,获得10
17秒前
蓝天应助科研通管家采纳,获得20
17秒前
整齐晓筠完成签到 ,获得积分10
18秒前
科研通AI2S应助舒心的雍采纳,获得10
22秒前
贪玩初彤完成签到 ,获得积分10
23秒前
anhuiwsy完成签到 ,获得积分10
26秒前
虚心的乘云完成签到,获得积分10
27秒前
augen完成签到 ,获得积分10
31秒前
31秒前
Peter完成签到 ,获得积分10
33秒前
tjfwg完成签到,获得积分10
35秒前
舒心的雍发布了新的文献求助10
36秒前
djdh发布了新的文献求助200
40秒前
LUNE完成签到 ,获得积分10
42秒前
Iron_five完成签到 ,获得积分0
45秒前
xuxuxuxu完成签到 ,获得积分10
45秒前
激昂的化蛹完成签到,获得积分10
48秒前
48秒前
Borges完成签到 ,获得积分10
49秒前
科研通AI2S应助调皮元珊采纳,获得10
53秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466