HCLR-Net: Hybrid Contrastive Learning Regularization with Locally Randomized Perturbation for Underwater Image Enhancement

人工智能 水下 模式识别(心理学) 数学 正规化(语言学) 计算机科学 计算机视觉 地理 考古
作者
Jingchun Zhou,Jiaming Sun,Chongyi Li,Qiuping Jiang,Man Zhou,Kin‐Man Lam,Weishi Zhang,Xianping Fu
出处
期刊:International Journal of Computer Vision [Springer Science+Business Media]
卷期号:132 (10): 4132-4156 被引量:27
标识
DOI:10.1007/s11263-024-01987-y
摘要

Underwater image enhancement presents a significant challenge due to the complex and diverse underwater environments that result in severe degradation phenomena such as light absorption, scattering, and color distortion. More importantly, obtaining paired training data for these scenarios is a challenging task, which further hinders the generalization performance of enhancement models. To address these issues, we propose a novel approach, the Hybrid Contrastive Learning Regularization (HCLR-Net). Our method is built upon a distinctive hybrid contrastive learning regularization strategy that incorporates a unique methodology for constructing negative samples. This approach enables the network to develop a more robust sample distribution. Notably, we utilize non-paired data for both positive and negative samples, with negative samples are innovatively reconstructed using local patch perturbations. This strategy overcomes the constraints of relying solely on paired data, boosting the model's potential for generalization. The HCLR-Net also incorporates an Adaptive Hybrid Attention module and a Detail Repair Branch for effective feature extraction and texture detail restoration, respectively. Comprehensive experiments demonstrate the superiority of our method, which shows substantial improvements over several state-of-the-art methods in terms of quantitative metrics, significantly enhances the visual quality of underwater images, establishing its innovative and practical applicability. Our code is available at: https://github.com/zhoujingchun03/HCLR-Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
遊星完成签到,获得积分10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
清圆527完成签到,获得积分10
刚刚
Emma应助科研通管家采纳,获得10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
drbrianlau完成签到,获得积分10
1秒前
学术蝗虫完成签到,获得积分10
2秒前
热心的诗蕊完成签到,获得积分10
2秒前
00完成签到 ,获得积分10
2秒前
山顶洞人发布了新的文献求助10
2秒前
小马甲应助玩命的冷珍采纳,获得10
2秒前
糖脎发布了新的文献求助10
2秒前
无情向薇完成签到 ,获得积分10
2秒前
3秒前
3秒前
szzz完成签到,获得积分10
4秒前
yuHS完成签到,获得积分10
5秒前
li完成签到,获得积分20
5秒前
5秒前
彳亍1117应助放放风采纳,获得20
5秒前
量子星尘发布了新的文献求助10
5秒前
江南最后的深情完成签到,获得积分10
6秒前
kent完成签到,获得积分10
7秒前
dong发布了新的文献求助10
7秒前
8秒前
why完成签到,获得积分10
8秒前
Miya_han完成签到,获得积分10
8秒前
8秒前
东晓完成签到,获得积分10
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960190
求助须知:如何正确求助?哪些是违规求助? 3506378
关于积分的说明 11129378
捐赠科研通 3238540
什么是DOI,文献DOI怎么找? 1789783
邀请新用户注册赠送积分活动 871900
科研通“疑难数据库(出版商)”最低求助积分说明 803095