强化学习
机械手
计算机科学
控制理论(社会学)
控制器(灌溉)
控制工程
模式(计算机接口)
自适应控制
人工智能
机器人
工程类
人机交互
控制(管理)
农学
生物
作者
Di Luo,Zhiqin Cai,Da Jiang,Xiaolu Qiu,Haijun Peng
标识
DOI:10.1109/rcae59706.2023.10398851
摘要
In this paper, a reinforcement-learning-based adaptive sliding mode controller (RLASMC) is proposed to achieve more precise tracking control in robotic manipulator systems with nonlinear friction, modeling errors, and external disturbances. In this controller, a robust term is designed to compensate for the external disturbance, system uncertainty, and joint friction. Furthermore, the dynamic information of the robotic manipulator is employed as input to a reinforcement learning agent, enabling the agent to optimize the parameters of the sliding mode controller within a continuous action space. Simulation studies are implemented to validate the effectiveness of the proposed controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI