Thick Cloud Removal in Multitemporal Remote Sensing Images via Low-Rank Regularized Self-Supervised Network

遥感 计算机科学 云计算 预处理器 组分(热力学) 人工智能 图像(数学) 秩(图论) 地质学 数学 物理 组合数学 操作系统 热力学
作者
Yong Chen,Maolin Chen,Wei He,Jinshan Zeng,Min Huang,Yu‐Bang Zheng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2024.3358493
摘要

The existence of thick clouds covers the comprehensive Earth observation of optical remote sensing images (RSIs). Cloud removal is an effective and economical preprocessing step to improve the subsequent applications of RSIs. Deep learning (DL)-based methods have attracted much attention and achieved state-of-the-art results. However, most of these methods suffer from the following issues: 1) ignore the physical characteristics of RSIs; 2) require paired images with/without cloud or extra auxiliary images (such as SAR); and 3) demand the cloud mask. These issues might have limited the flexibility of existing networks. In this paper, we propose a novel low-rank regularized self-supervised network (LRRSSN) that couples model-driven and data-driven methods to remove the thick cloud from multitemporal remote sensing images (MRSIs). First, motivated by the equal importance of image and cloud components as well as their intrinsic characteristics, we decompose the observed image into low-rank image and structural sparse cloud components. In this way, we obtain a model-driven thick cloud removal method where the spectral-temporal low-rank correlation of the image component and the spectral structural sparsity of the cloud component are effectively exploited. Second, to capture the complex nonlinear features of different scenarios, the data-driven self-supervised network that does not require external training datasets is designed to explore the deep prior of the image component. Third, the coupled model-driven and data-driven LRRSSN is optimized by an efficient half-quadratic splitting algorithm. Finally, without knowing the exact cloud mask, we estimate the cloud mask to preserve information in cloud-free areas as much as possible. Experiments conducted in synthetic and real-world scenarios demonstrate the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
小李新人完成签到 ,获得积分10
3秒前
728完成签到,获得积分10
3秒前
YJY完成签到,获得积分10
4秒前
英俊的铭应助if采纳,获得10
4秒前
叶子兮完成签到,获得积分10
4秒前
程小柒完成签到 ,获得积分10
5秒前
冷冷暴力完成签到,获得积分10
5秒前
7秒前
盼盼完成签到,获得积分10
8秒前
清脆安南完成签到 ,获得积分10
8秒前
laoli2022完成签到,获得积分10
10秒前
wanci应助今天吃什么采纳,获得10
11秒前
离岸完成签到,获得积分10
12秒前
子非鱼完成签到,获得积分10
12秒前
x5kyi完成签到,获得积分10
18秒前
研友_Z1eDgZ完成签到,获得积分10
20秒前
ee完成签到,获得积分10
21秒前
Shengwj完成签到,获得积分10
21秒前
21秒前
谦让汝燕完成签到,获得积分10
21秒前
kyhappy_2002完成签到 ,获得积分10
23秒前
FashionBoy应助朱冰蓝采纳,获得10
23秒前
思苇完成签到,获得积分10
26秒前
26秒前
朱冰蓝完成签到,获得积分10
27秒前
woodword完成签到,获得积分10
27秒前
现代小丸子完成签到 ,获得积分10
28秒前
QAQSS完成签到 ,获得积分10
30秒前
依旧完成签到,获得积分10
31秒前
LSY完成签到,获得积分10
32秒前
Liang完成签到,获得积分10
32秒前
33秒前
文安完成签到,获得积分10
33秒前
完美世界应助木光采纳,获得10
34秒前
nextconnie完成签到,获得积分10
37秒前
玉玲子LIN完成签到,获得积分10
37秒前
wszl发布了新的文献求助10
38秒前
陈少华完成签到 ,获得积分10
38秒前
高分求助中
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4106121
求助须知:如何正确求助?哪些是违规求助? 3644067
关于积分的说明 11542875
捐赠科研通 3351090
什么是DOI,文献DOI怎么找? 1841209
邀请新用户注册赠送积分活动 907924
科研通“疑难数据库(出版商)”最低求助积分说明 825078