抗菌剂
纳米技术
病毒感染
生物
计算生物学
材料科学
微生物学
病毒
病毒学
作者
Ángel Serrano‐Aroca,Kazuo Takayama,Yogendra Kumar Mishra,César de la Fuente‐Núñez
标识
DOI:10.1002/adfm.202402023
摘要
Abstract In the antimicrobial resistance era, carbon‐based nanomaterials (CBNs) such as fullerenes, carbon dots, graphene, and their derivatives are promising therapeutic tools in combating viral diseases. This review shows that these materials have broad‐spectrum antiviral activity against 33 viruses belonging to different Baltimore groups. CBNs also exhibit antimicrobial activity against bacteria and fungi and possess a low risk of selecting for resistance, since their primary mode of antimicrobial action involves physically damaging the microbes. CBNs also offer additional promising properties, including enhanced antiviral effectiveness under diverse types of irradiation and facilitating antiviral immune responses. Their potential as antiviral agents is still in its infancy and future research should focus on their toxicity, antiviral mechanisms, pharmacokinetics, and bioavailability. They are also potential antiviral materials for preventing the transmission of viral diseases for use in face masks, shields, hospital and airport surfaces, and elevators, among others. It is anticipated that CBNs will play an increasingly significant role in the fight against viruses and infectious diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI