A brief review of machine learning-assisted Mg alloy design, processing, and property predictions

财产(哲学) 合金 计算机科学 材料科学 人工智能 冶金 哲学 认识论
作者
Yanhui Cheng,Lifei Wang,Chaoyang Yang,Yunli Bai,Hongxia Wang,Weili Cheng,Hanuma Reddy Tiyyagura,A. A. Komissarov,Kwang Seon Shin
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:30: 8108-8127 被引量:5
标识
DOI:10.1016/j.jmrt.2024.05.139
摘要

Owing to the hexagonal close-packed (HCP) crystal structure inherent in Mg alloys, strong basal texture can readily be induced through the processes of rolling or extrusion. The anisotropy of the texture of Mg alloys impacts their stamping and forming capabilities, limiting their use in certain applications. Microalloying and shear deformation are currently the most common methods of weakening the texture of Mg alloys. Many shearing processes have been extensively studied, and given that they require complex equipment and make it difficult to achieve mass production, major attention has turned to studying the design of microalloys. Traditional trial-and-error approaches for developing micro-alloying confront many challenges, including longer test cycles and increasing expenses. The rapid advancement of big data and artificial intelligence opens up a new channel for the efficient advancement of metallic materials, specifically the application of machine learning to aid in the design of Mg alloys. ML modeling can be used to find correlations between features and attributes in data, allowing for the development and design of high-performance Mg alloys. The article provides an extensive overview of machine learning applications in Mg alloys. These include the discovery of high-performance alloys, the selection of coating designs, the design of Mg matrix composites, the prediction of second phases, the microstructure modification, optimization of rolling or extrusion parameters, and the prediction of mechanical and corrosion properties. In conclusion, challenges and prospects for the rational design of alloys with machine learning support were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助lsy采纳,获得10
刚刚
zw完成签到,获得积分10
5秒前
上官枫完成签到 ,获得积分10
6秒前
6秒前
8秒前
ddddddd完成签到 ,获得积分10
9秒前
席若风发布了新的文献求助10
9秒前
zhangjingjing完成签到,获得积分10
9秒前
英姑应助123采纳,获得10
10秒前
仿真小学生完成签到,获得积分10
11秒前
peace发布了新的文献求助10
12秒前
12秒前
英姑应助ven采纳,获得10
12秒前
zhangjingjing发布了新的文献求助10
13秒前
小娟子完成签到,获得积分10
13秒前
Ava应助老阳采纳,获得10
14秒前
lsy发布了新的文献求助10
17秒前
17秒前
zcbb发布了新的文献求助10
20秒前
852应助垚焱采纳,获得10
20秒前
20秒前
FashionBoy应助仲侣弥月采纳,获得10
21秒前
镜小小静发布了新的文献求助10
22秒前
22秒前
24秒前
ying发布了新的文献求助10
24秒前
星星完成签到 ,获得积分10
25秒前
机灵的幼菱应助777采纳,获得10
26秒前
科研通AI5应助赵亮采纳,获得10
27秒前
27秒前
orixero应助整齐千柳采纳,获得10
28秒前
28秒前
111发布了新的文献求助10
28秒前
SciGPT应助hqh采纳,获得10
29秒前
30秒前
老阳发布了新的文献求助10
31秒前
32秒前
小二郎应助七七采纳,获得10
32秒前
仲侣弥月发布了新的文献求助10
33秒前
瑶瑶完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738641
求助须知:如何正确求助?哪些是违规求助? 3281995
关于积分的说明 10027164
捐赠科研通 2998750
什么是DOI,文献DOI怎么找? 1645450
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749972