Exploring Non-linear Urban Vibrancy Dynamics in Emerging New Towns: A Case Study of the Wuhan Metropolitan Area

大都市区 经济地理学 区域科学 动力学(音乐) 地理 社会学 考古 教育学
作者
Zhenyu Zhang,Liyuan Zhao,Ming Zhang
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:112: 105580-105580 被引量:6
标识
DOI:10.1016/j.scs.2024.105580
摘要

New towns have been extensively developed in many worldwide metropolises to overcome a series of urban crisis caused by over-intensive population and economic activity, such as environmental deterioration, traffic congestion and space shortage. The successful development of new towns has been regarded as a common, international urban challenge aimed at creating vital and lively urban life. Quantifying the complex relationship between new town vibrancy and the built environment provides a theoretical basis for formulating adequate planning regulations and policies to solve the development predicaments of new towns. Taking the Wuhan metropolitan area as the case study, this study employs the gradient boosting decision tree (GBDT) machine learning method to delve into the intricate non-linear relationship between urban vibrancy and built environment indicators both in both peripheric new towns (NT) and central mother cities (MC), shedding light on the differences in the characteristics and complexities of vibrancy between NT and MC. The findings reveal stark disparities in vibrancy levels between NT and MC, emphasizing the critical need for tailored revitalization strategies. It is found that the indicators with the highest contribution to the impact of vibrancy in NT and MC are respectively the point of interest (POI) density and Transit-Oriented Development (TOD) development intensity. Model comparison between NT and MC concludes that enhancing POI density to meet the basic needs of citizens is a prerequisite for fostering urban vibrancy. To successfully create similarly vital and lively urban life as that in the MC, NT should focus on the impacts of TOD development and policy factors such as government relocation on vibrancy. Finally, deriving from these findings, we propose some policy insights and practical strategies for urban practitioners and policymakers to enhance the vibrancy and sustainability of the new towns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sean完成签到,获得积分10
1秒前
2秒前
劉浏琉应助xh采纳,获得10
2秒前
下周一完成签到,获得积分10
2秒前
希希发布了新的文献求助10
2秒前
FleurdelisDZhang完成签到,获得积分10
2秒前
文静的晓绿完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Luka完成签到,获得积分10
4秒前
西凉发布了新的文献求助10
4秒前
4秒前
zhenzhen发布了新的文献求助10
4秒前
tang完成签到,获得积分10
5秒前
圆滚滚完成签到,获得积分20
5秒前
ZhenpuWang完成签到,获得积分10
6秒前
Hello应助追寻梦之采纳,获得10
6秒前
7秒前
hohn完成签到,获得积分10
7秒前
xxx完成签到,获得积分20
7秒前
爆米花应助gm采纳,获得10
7秒前
Akim应助tianjiu采纳,获得10
8秒前
8秒前
8秒前
Minton完成签到,获得积分10
9秒前
夸夸555完成签到,获得积分10
9秒前
hhh2018687发布了新的文献求助30
9秒前
完美世界应助小墩墩采纳,获得10
9秒前
9秒前
顺顺利利毕业完成签到,获得积分10
10秒前
zhaozhao完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
姜玲完成签到,获得积分10
12秒前
13秒前
贤惠的早晨完成签到 ,获得积分10
13秒前
kk发布了新的文献求助10
14秒前
老迟到的从筠完成签到,获得积分10
14秒前
玉子发布了新的文献求助10
14秒前
拼搏草莓发布了新的文献求助10
15秒前
CC的tt驳回了ilihe应助
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774251
求助须知:如何正确求助?哪些是违规求助? 5616574
关于积分的说明 15435095
捐赠科研通 4906776
什么是DOI,文献DOI怎么找? 2640385
邀请新用户注册赠送积分活动 1588179
关于科研通互助平台的介绍 1543225