Exploring Non-linear Urban Vibrancy Dynamics in Emerging New Towns: A Case Study of the Wuhan Metropolitan Area

大都市区 经济地理学 区域科学 动力学(音乐) 地理 社会学 考古 教育学
作者
Zhenyu Zhang,Liyuan Zhao,Ming Zhang
出处
期刊:Sustainable Cities and Society [Elsevier BV]
卷期号:112: 105580-105580 被引量:6
标识
DOI:10.1016/j.scs.2024.105580
摘要

New towns have been extensively developed in many worldwide metropolises to overcome a series of urban crisis caused by over-intensive population and economic activity, such as environmental deterioration, traffic congestion and space shortage. The successful development of new towns has been regarded as a common, international urban challenge aimed at creating vital and lively urban life. Quantifying the complex relationship between new town vibrancy and the built environment provides a theoretical basis for formulating adequate planning regulations and policies to solve the development predicaments of new towns. Taking the Wuhan metropolitan area as the case study, this study employs the gradient boosting decision tree (GBDT) machine learning method to delve into the intricate non-linear relationship between urban vibrancy and built environment indicators both in both peripheric new towns (NT) and central mother cities (MC), shedding light on the differences in the characteristics and complexities of vibrancy between NT and MC. The findings reveal stark disparities in vibrancy levels between NT and MC, emphasizing the critical need for tailored revitalization strategies. It is found that the indicators with the highest contribution to the impact of vibrancy in NT and MC are respectively the point of interest (POI) density and Transit-Oriented Development (TOD) development intensity. Model comparison between NT and MC concludes that enhancing POI density to meet the basic needs of citizens is a prerequisite for fostering urban vibrancy. To successfully create similarly vital and lively urban life as that in the MC, NT should focus on the impacts of TOD development and policy factors such as government relocation on vibrancy. Finally, deriving from these findings, we propose some policy insights and practical strategies for urban practitioners and policymakers to enhance the vibrancy and sustainability of the new towns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbipp发布了新的文献求助10
1秒前
FashionBoy应助抹茶慕斯采纳,获得10
1秒前
勤恳的天亦应助不倦采纳,获得20
2秒前
思源应助先字母采纳,获得10
2秒前
3秒前
湖湖给湖湖的求助进行了留言
5秒前
7秒前
NexusExplorer应助liuweiwei采纳,获得10
7秒前
7秒前
7秒前
李爱国应助John采纳,获得10
7秒前
尹梦洁发布了新的文献求助10
7秒前
8秒前
发sci的女人完成签到,获得积分10
9秒前
慕青应助务实的筝采纳,获得10
9秒前
顾健功发布了新的文献求助10
10秒前
典雅的静发布了新的文献求助10
10秒前
踏雪去哪儿了完成签到,获得积分10
11秒前
阿拉善完成签到,获得积分10
11秒前
白虞发布了新的文献求助10
11秒前
bai发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
田様应助杨天天采纳,获得10
13秒前
111发布了新的文献求助10
13秒前
西瓜完成签到,获得积分10
14秒前
17秒前
星辰大海应助一一采纳,获得30
17秒前
18秒前
栀璃鸳挽发布了新的文献求助10
18秒前
19秒前
遇见0608发布了新的文献求助10
21秒前
llwen完成签到 ,获得积分10
21秒前
22秒前
斯文白梦完成签到,获得积分10
23秒前
23秒前
wangyuq发布了新的文献求助10
24秒前
迅速笑寒发布了新的文献求助10
25秒前
John发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886200
求助须知:如何正确求助?哪些是违规求助? 4171169
关于积分的说明 12943805
捐赠科研通 3931690
什么是DOI,文献DOI怎么找? 2157185
邀请新用户注册赠送积分活动 1175580
关于科研通互助平台的介绍 1080137