Simulating Financial Market via Large Language Model based Agents

金融市场 财务 业务 计算机科学
作者
Shen Gao,Yuntao Wen,Minghang Zhu,Jianing Wei,Yuhan Cheng,Qunzi Zhang,Shuo Shang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.19966
摘要

Most economic theories typically assume that financial market participants are fully rational individuals and use mathematical models to simulate human behavior in financial markets. However, human behavior is often not entirely rational and is challenging to predict accurately with mathematical models. In this paper, we propose \textbf{A}gent-based \textbf{S}imulated \textbf{F}inancial \textbf{M}arket (ASFM), which first constructs a simulated stock market with a real order matching system. Then, we propose a large language model based agent as the stock trader, which contains the profile, observation, and tool-learning based action module. The trading agent can comprehensively understand current market dynamics and financial policy information, and make decisions that align with their trading strategy. In the experiments, we first verify that the reactions of our ASFM are consistent with the real stock market in two controllable scenarios. In addition, we also conduct experiments in two popular economics research directions, and we find that conclusions drawn in our \model align with the preliminary findings in economics research. Based on these observations, we believe our proposed ASFM provides a new paradigm for economic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkk发布了新的文献求助10
1秒前
桐桐应助热心枕头采纳,获得10
2秒前
2秒前
Aoren完成签到,获得积分10
2秒前
2秒前
科研通AI5应助小惠子同学采纳,获得10
3秒前
rsy完成签到,获得积分10
3秒前
丘比特应助顺利的奇异果采纳,获得10
3秒前
焦糖完成签到 ,获得积分10
5秒前
慕青应助fanfan采纳,获得10
6秒前
顾矜应助max2023采纳,获得10
6秒前
转录因子发布了新的文献求助10
6秒前
8秒前
NexusExplorer应助橡皮鱼采纳,获得10
8秒前
大模型应助负责法法采纳,获得10
9秒前
elijah发布了新的文献求助10
9秒前
11秒前
晨晨完成签到 ,获得积分10
11秒前
15秒前
如意冰棍完成签到 ,获得积分10
15秒前
二由完成签到 ,获得积分10
15秒前
陈灵敏关注了科研通微信公众号
16秒前
17秒前
洪洪1发布了新的文献求助10
18秒前
20秒前
fanfan完成签到,获得积分10
20秒前
22秒前
kecheng发布了新的文献求助10
23秒前
fanfan发布了新的文献求助10
23秒前
yammy完成签到,获得积分10
23秒前
顺利的奇异果完成签到,获得积分10
23秒前
洪洪1完成签到,获得积分20
24秒前
24秒前
王sir完成签到,获得积分10
26秒前
橡皮鱼发布了新的文献求助10
29秒前
善学以致用应助fdaqin采纳,获得10
29秒前
29秒前
31秒前
32秒前
小韩要考博完成签到 ,获得积分10
34秒前
高分求助中
IZELTABART TAPATANSINE 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3706303
求助须知:如何正确求助?哪些是违规求助? 3255356
关于积分的说明 9894734
捐赠科研通 2967717
什么是DOI,文献DOI怎么找? 1627404
邀请新用户注册赠送积分活动 771511
科研通“疑难数据库(出版商)”最低求助积分说明 743390