Learning Unified Anchor Graph for Joint Clustering of Hyperspectral and LiDAR Data

计算机科学 聚类分析 可扩展性 数据挖掘 平滑的 图形 机器学习 人工智能 模式识别(心理学) 理论计算机科学 计算机视觉 数据库
作者
Yaoming Cai,Zijia Zhang,Xiaobo Liu,Yao Ding,Fei Li,Jun Tan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3392484
摘要

The joint clustering of multimodal remote sensing (RS) data poses a critical and challenging task in Earth observation. Although recent advances in multiview subspace clustering have shown remarkable success, existing methods become computationally prohibitive when dealing with large-scale RS datasets. Moreover, they neglect intrinsic nonlinear and spatial interdependencies among heterogeneous RS data and lack generalization ability for out-of-sample data, thereby restricting their applicability. This article introduces a novel unified framework called anchor-based multiview kernel subspace clustering with spatial regularization (AMKSC). It learns a scalable anchor graph in the kernel space, leveraging contributions from each modality instead of seeking a consensus full graph in the feature space. To ensure spatial consistency, we incorporate a spatial smoothing operation into the formulation. The method is efficiently solved using an alternating optimization strategy, and we provide theoretical evidence of its scalability with linear computational complexity. Furthermore, an out-of-sample extension of AMKSC based on multiview collaborative representation-based classification is introduced, enabling the handling of larger datasets and unseen instances. Extensive experiments on three real heterogeneous RS datasets confirm the superiority of our proposed approach over state-of-the-art methods in terms of clustering performance and time efficiency. The source code is available at https://github.com/AngryCai/AMKSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阎幻天完成签到,获得积分10
2秒前
bvh发布了新的文献求助10
4秒前
叶子完成签到 ,获得积分10
4秒前
乙歪歪发布了新的文献求助10
5秒前
123发布了新的文献求助30
6秒前
8秒前
无花果应助小雷采纳,获得10
10秒前
14秒前
斯文败类应助整齐凌萱采纳,获得10
15秒前
crazydick发布了新的文献求助10
15秒前
午见千山应助wws采纳,获得10
16秒前
生动邴完成签到 ,获得积分10
17秒前
vivid完成签到,获得积分10
18秒前
Leoling完成签到,获得积分20
19秒前
Hello应助吴小苏采纳,获得10
19秒前
瘦瘦夜南完成签到 ,获得积分20
19秒前
Leoling发布了新的文献求助10
22秒前
23秒前
23秒前
renovel完成签到,获得积分10
26秒前
科研通AI2S应助视野胤采纳,获得10
27秒前
小米发布了新的文献求助10
28秒前
整齐凌萱发布了新的文献求助10
28秒前
zzz完成签到,获得积分10
28秒前
30秒前
小雷完成签到,获得积分10
31秒前
32秒前
Ava应助天才小熊猫采纳,获得10
32秒前
orixero应助bloodol3采纳,获得10
33秒前
LT发布了新的文献求助30
33秒前
aa完成签到,获得积分10
35秒前
Acadia发布了新的文献求助10
35秒前
蜜雪冰城发布了新的文献求助10
36秒前
36秒前
yu完成签到 ,获得积分10
37秒前
37秒前
39秒前
43秒前
43秒前
43秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790122
关于积分的说明 7793698
捐赠科研通 2446483
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601102