Learning Unified Anchor Graph for Joint Clustering of Hyperspectral and LiDAR Data

计算机科学 聚类分析 可扩展性 数据挖掘 平滑的 图形 机器学习 人工智能 理论计算机科学 计算机视觉 数据库
作者
Yaoming Cai,Zijia Zhang,Xiaobo Liu,Yao Ding,Fei Li,Tan Jin-hua
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 6341-6354 被引量:23
标识
DOI:10.1109/tnnls.2024.3392484
摘要

The joint clustering of multimodal remote sensing (RS) data poses a critical and challenging task in Earth observation. Although recent advances in multiview subspace clustering have shown remarkable success, existing methods become computationally prohibitive when dealing with large-scale RS datasets. Moreover, they neglect intrinsic nonlinear and spatial interdependencies among heterogeneous RS data and lack generalization ability for out-of-sample data, thereby restricting their applicability. This article introduces a novel unified framework called anchor-based multiview kernel subspace clustering with spatial regularization (AMKSC). It learns a scalable anchor graph in the kernel space, leveraging contributions from each modality instead of seeking a consensus full graph in the feature space. To ensure spatial consistency, we incorporate a spatial smoothing operation into the formulation. The method is efficiently solved using an alternating optimization strategy, and we provide theoretical evidence of its scalability with linear computational complexity. Furthermore, an out-of-sample extension of AMKSC based on multiview collaborative representation-based classification is introduced, enabling the handling of larger datasets and unseen instances. Extensive experiments on three real heterogeneous RS datasets confirm the superiority of our proposed approach over state-of-the-art methods in terms of clustering performance and time efficiency. The source code is available at https://github.com/AngryCai/AMKSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JIECHENG完成签到 ,获得积分10
1秒前
1秒前
优雅苑睐发布了新的文献求助20
1秒前
周周完成签到 ,获得积分10
1秒前
胖大海完成签到,获得积分10
2秒前
2秒前
YingQin发布了新的文献求助10
3秒前
ukmy发布了新的文献求助20
3秒前
3秒前
3秒前
3秒前
李健应助自由灵安采纳,获得10
4秒前
ccm应助Wangyingjie5采纳,获得10
5秒前
归尘应助顺其自然_666888采纳,获得10
5秒前
酷波er应助余鑫采纳,获得10
6秒前
6秒前
6秒前
英姑应助冥王星采纳,获得10
7秒前
现代的澜发布了新的文献求助10
7秒前
7秒前
8秒前
Natural发布了新的文献求助10
8秒前
雷一二发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
Scinature完成签到,获得积分10
9秒前
10秒前
10秒前
玛卡巴卡发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
usr123完成签到 ,获得积分10
10秒前
丘比特应助YingQin采纳,获得10
10秒前
聪慧的凝海完成签到 ,获得积分0
11秒前
11秒前
11秒前
GEM完成签到 ,获得积分10
11秒前
科研通AI6应助demon采纳,获得10
12秒前
胖大海发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244