Developing a New Phylogeny-Driven Random Forest Model for Functional Metagenomics

基因组 系统发育学 随机森林 系统发育树 生物 计算生物学 分类器(UML) 进化生物学 微生物群 机器学习 人工智能 基因 计算机科学 生物信息学 遗传学
作者
Jyotsna Talreja Wassan,Haiying Wang,Huiru Zheng
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 763-770 被引量:8
标识
DOI:10.1109/tnb.2023.3283462
摘要

Metagenomics is an unobtrusive science linking microbial genes to biological functions or environmental states. Classifying microbial genes into their functional repertoire is an important task in the downstream analysis of Metagenomic studies. The task involves Machine Learning (ML) based supervised methods to achieve good classification performance. Random Forest (RF) has been applied rigorously to microbial gene abundance profiles, mapping them to functional phenotypes. The current research targets tuning RF by the evolutionary ancestry of microbial phylogeny, developing a Phylogeny-RF model for functional classification of metagenomes. This method facilitates capturing the effects of phylogenetic relatedness in an ML classifier itself rather than just applying a supervised classifier over the raw abundances of microbial genes. The idea is rooted in the fact that closely related microbes by phylogeny are highly correlated and tend to have similar genetic and phenotypic traits. Such microbes behave similarly; and hence tend to be selected together, or one of these could be dropped from the analysis, to improve the ML process. The proposed Phylogeny-RF algorithm has been compared with state-of-the-art classification methods including RF and the phylogeny-aware methods of MetaPhyl and PhILR, using three real-world 16S rRNA metagenomic datasets. It has been observed that the proposed method not only achieved significantly better performance than the traditional RF model but also performed better than the other phylogeny-driven benchmarks (p < 0.05). For example, Phylogeny-RF attained a highest AUC of 0.949 and Kappa of 0.891 over soil microbiomes in comparison to other benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsljc134发布了新的文献求助10
1秒前
圆锥香蕉应助汐云月沙采纳,获得200
1秒前
lilx关注了科研通微信公众号
1秒前
DFX发布了新的文献求助10
2秒前
余成风发布了新的文献求助10
3秒前
科研通AI6应助淡定的松子采纳,获得10
4秒前
4秒前
4秒前
4秒前
Nefelibata完成签到,获得积分10
5秒前
LIU发布了新的文献求助10
5秒前
5秒前
万能图书馆应助许子峻采纳,获得10
5秒前
5秒前
、、完成签到,获得积分10
5秒前
7秒前
yihua完成签到,获得积分20
7秒前
8秒前
9秒前
lbc发布了新的文献求助10
10秒前
yihua发布了新的文献求助10
11秒前
研友_LOqqmZ发布了新的文献求助10
11秒前
浮游应助爱听歌紫南采纳,获得10
14秒前
清新的橘子完成签到,获得积分10
14秒前
zz完成签到,获得积分10
14秒前
小魔王发布了新的文献求助10
14秒前
14秒前
15秒前
现代破茧发布了新的文献求助10
15秒前
科研通AI6应助DFX采纳,获得10
15秒前
7890733发布了新的文献求助10
15秒前
胡莱发布了新的文献求助20
15秒前
16秒前
bkagyin应助林强采纳,获得10
16秒前
Hello应助mslln采纳,获得10
17秒前
花花发布了新的文献求助10
18秒前
lvx发布了新的文献求助10
18秒前
19秒前
打打应助hp571采纳,获得10
19秒前
小尚完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400171
求助须知:如何正确求助?哪些是违规求助? 4519499
关于积分的说明 14075330
捐赠科研通 4432369
什么是DOI,文献DOI怎么找? 2433467
邀请新用户注册赠送积分活动 1425819
关于科研通互助平台的介绍 1404564