Developing a New Phylogeny-Driven Random Forest Model for Functional Metagenomics

基因组 系统发育学 随机森林 系统发育树 生物 计算生物学 分类器(UML) 进化生物学 微生物群 机器学习 人工智能 基因 计算机科学 生物信息学 遗传学
作者
Jyotsna Talreja Wassan,Haiying Wang,Huiru Zheng
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:22 (4): 763-770 被引量:8
标识
DOI:10.1109/tnb.2023.3283462
摘要

Metagenomics is an unobtrusive science linking microbial genes to biological functions or environmental states. Classifying microbial genes into their functional repertoire is an important task in the downstream analysis of Metagenomic studies. The task involves Machine Learning (ML) based supervised methods to achieve good classification performance. Random Forest (RF) has been applied rigorously to microbial gene abundance profiles, mapping them to functional phenotypes. The current research targets tuning RF by the evolutionary ancestry of microbial phylogeny, developing a Phylogeny-RF model for functional classification of metagenomes. This method facilitates capturing the effects of phylogenetic relatedness in an ML classifier itself rather than just applying a supervised classifier over the raw abundances of microbial genes. The idea is rooted in the fact that closely related microbes by phylogeny are highly correlated and tend to have similar genetic and phenotypic traits. Such microbes behave similarly; and hence tend to be selected together, or one of these could be dropped from the analysis, to improve the ML process. The proposed Phylogeny-RF algorithm has been compared with state-of-the-art classification methods including RF and the phylogeny-aware methods of MetaPhyl and PhILR, using three real-world 16S rRNA metagenomic datasets. It has been observed that the proposed method not only achieved significantly better performance than the traditional RF model but also performed better than the other phylogeny-driven benchmarks (p < 0.05). For example, Phylogeny-RF attained a highest AUC of 0.949 and Kappa of 0.891 over soil microbiomes in comparison to other benchmarks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助要减肥的乐曲采纳,获得10
刚刚
1秒前
曹丛通发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
鲤鱼谷秋发布了新的文献求助10
5秒前
桐桐应助杏杏采纳,获得10
5秒前
5秒前
5秒前
李爱国应助我的文献采纳,获得10
5秒前
Rasink完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
零度火发布了新的文献求助10
7秒前
7秒前
朴实的南露完成签到,获得积分10
8秒前
zhengxc完成签到,获得积分10
8秒前
樱桃发布了新的文献求助10
9秒前
9秒前
9秒前
华仔应助幸福的羿采纳,获得10
10秒前
Guo发布了新的文献求助10
10秒前
jjjdcjcj完成签到,获得积分10
10秒前
KY发布了新的文献求助10
11秒前
所所应助高天雨采纳,获得10
11秒前
所所应助企福采纳,获得10
11秒前
fengjingjing发布了新的文献求助10
12秒前
12秒前
叶子完成签到,获得积分10
12秒前
13秒前
smottom应助biubiuu采纳,获得10
13秒前
14秒前
zzz完成签到,获得积分10
15秒前
倩Q发布了新的文献求助10
15秒前
樱桃完成签到,获得积分10
16秒前
xiang发布了新的文献求助10
16秒前
NexusExplorer应助原野采纳,获得10
18秒前
19秒前
池林完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323