已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semantic-Powered Explainable Model-Free Few-Shot Learning Scheme of Diagnosing COVID-19 on Chest X-Ray

2019年冠状病毒病(COVID-19) 弹丸 方案(数学) 计算机科学 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 放射科 医学 内科学 病毒学 数学 材料科学 数学分析 疾病 传染病(医学专业) 爆发 冶金
作者
Yihang Wang,Chunjuan Jiang,Youqing Wu,Tianxu Lv,Heng Sun,Yuan Liu,Lihua Li,Xiang Pan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 5870-5882 被引量:10
标识
DOI:10.1109/jbhi.2022.3205167
摘要

Chest X-ray (CXR) is commonly performed as an initial investigation in COVID-19, whose fast and accurate diagnosis is critical. Recently, deep learning has a great potential in detecting people who are suspected to be infected with COVID-19. However, deep learning resulting with black-box models, which often breaks down when forced to make predictions about data for which limited supervised information is available and lack inter-pretability, still is a major barrier for clinical integration. In this work, we hereby propose a semantic-powered explainable model-free few-shot learning scheme to quickly and precisely diagnose COVID-19 with higher reliability and transparency. Specifically, we design a Report Image Explanation Cell (RIEC) to exploit clinically indicators derived from radiology reports as interpretable driver to introduce prior knowledge at training. Meanwhile, multi-task collaborative diagnosis strategy (MCDS) is developed to construct N-way K-shot tasks, which adopts a cyclic and collaborative training approach for producing better generalization performance on new tasks. Extensive experiments demonstrate that the proposed scheme achieves competitive results (accuracy of 98.91%, precision of 98.95%, recall of 97.94% and F1-score of 98.57%) to diagnose COVID-19 and other pneumonia infected categories, even with only 200 paired CXR images and radiology reports for training. Furthermore, statistical results of comparative experiments show that our scheme provides an interpretable window into the COVID-19 diagnosis to improve the performance of the small sample size, the reliability and transparency of black-box deep learning models. Our source codes will be released on https://github.com/AI-medical-diagnosis-team-of-JNU/SPEMFSL-Diagnosis-COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骆凤灵完成签到 ,获得积分10
5秒前
小蘑菇应助之_ZH采纳,获得10
7秒前
搞怪尔槐完成签到,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
浅尝离白完成签到,获得积分0
11秒前
耳东完成签到,获得积分10
15秒前
18秒前
追寻哲瀚完成签到 ,获得积分10
18秒前
江子骞完成签到 ,获得积分10
20秒前
英勇羿完成签到,获得积分10
23秒前
Eliii完成签到 ,获得积分10
23秒前
完美世界应助bukeshuo采纳,获得10
23秒前
研友_nxV2X8发布了新的文献求助10
24秒前
神勇麦片发布了新的文献求助10
24秒前
25秒前
滾滾发布了新的文献求助10
27秒前
vuluv完成签到,获得积分10
27秒前
五棵松恶霸完成签到 ,获得积分10
27秒前
29秒前
之_ZH发布了新的文献求助10
30秒前
Hily完成签到,获得积分10
32秒前
研友_nxV2X8完成签到,获得积分10
37秒前
meixi完成签到,获得积分10
37秒前
感谢有你完成签到 ,获得积分10
42秒前
科研通AI2S应助研友_nxV2X8采纳,获得10
43秒前
43秒前
humorlife完成签到,获得积分10
44秒前
peterwei272完成签到 ,获得积分10
46秒前
滾滾发布了新的文献求助10
48秒前
咪咪不吃糖完成签到 ,获得积分20
54秒前
龙潜胜完成签到,获得积分20
54秒前
55秒前
59秒前
陈宝妮完成签到,获得积分10
1分钟前
苏鱼完成签到 ,获得积分10
1分钟前
A9W01U完成签到,获得积分10
1分钟前
大模型应助之_ZH采纳,获得10
1分钟前
Hello应助1213采纳,获得10
1分钟前
小宝完成签到,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146637
求助须知:如何正确求助?哪些是违规求助? 2797945
关于积分的说明 7826268
捐赠科研通 2454478
什么是DOI,文献DOI怎么找? 1306280
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522