Semantic-Powered Explainable Model-Free Few-Shot Learning Scheme of Diagnosing COVID-19 on Chest X-Ray

2019年冠状病毒病(COVID-19) 弹丸 方案(数学) 计算机科学 人工智能 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 放射科 医学 内科学 病毒学 数学 材料科学 数学分析 疾病 传染病(医学专业) 爆发 冶金
作者
Yihang Wang,Chunjuan Jiang,Youqing Wu,Tianxu Lv,Heng Sun,Yuan Liu,Lihua Li,Xiang Pan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (12): 5870-5882 被引量:10
标识
DOI:10.1109/jbhi.2022.3205167
摘要

Chest X-ray (CXR) is commonly performed as an initial investigation in COVID-19, whose fast and accurate diagnosis is critical. Recently, deep learning has a great potential in detecting people who are suspected to be infected with COVID-19. However, deep learning resulting with black-box models, which often breaks down when forced to make predictions about data for which limited supervised information is available and lack inter-pretability, still is a major barrier for clinical integration. In this work, we hereby propose a semantic-powered explainable model-free few-shot learning scheme to quickly and precisely diagnose COVID-19 with higher reliability and transparency. Specifically, we design a Report Image Explanation Cell (RIEC) to exploit clinically indicators derived from radiology reports as interpretable driver to introduce prior knowledge at training. Meanwhile, multi-task collaborative diagnosis strategy (MCDS) is developed to construct N-way K-shot tasks, which adopts a cyclic and collaborative training approach for producing better generalization performance on new tasks. Extensive experiments demonstrate that the proposed scheme achieves competitive results (accuracy of 98.91%, precision of 98.95%, recall of 97.94% and F1-score of 98.57%) to diagnose COVID-19 and other pneumonia infected categories, even with only 200 paired CXR images and radiology reports for training. Furthermore, statistical results of comparative experiments show that our scheme provides an interpretable window into the COVID-19 diagnosis to improve the performance of the small sample size, the reliability and transparency of black-box deep learning models. Our source codes will be released on https://github.com/AI-medical-diagnosis-team-of-JNU/SPEMFSL-Diagnosis-COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼冰岚发布了新的文献求助50
1秒前
陵铛铛铛发布了新的文献求助10
1秒前
搜集达人应助caoyy采纳,获得10
1秒前
YYJ25发布了新的文献求助10
2秒前
勤劳落雁发布了新的文献求助30
3秒前
科研通AI5应助优雅海雪采纳,获得10
3秒前
loulan完成签到,获得积分10
4秒前
orixero应助yyyyy语言采纳,获得10
6秒前
土里刨星星的鱼完成签到,获得积分20
6秒前
Ava应助sun采纳,获得30
8秒前
miss完成签到,获得积分10
9秒前
hu完成签到 ,获得积分10
10秒前
mathmotive完成签到,获得积分10
11秒前
白大褂完成签到,获得积分10
12秒前
12秒前
12秒前
小马甲应助孙淳采纳,获得10
14秒前
14秒前
科研通AI5应助二二二采纳,获得10
14秒前
赘婿应助尘林采纳,获得10
15秒前
HPP123完成签到,获得积分10
17秒前
18秒前
YYJ25发布了新的文献求助10
19秒前
liyuchen发布了新的文献求助10
19秒前
侦察兵发布了新的文献求助10
19秒前
21秒前
Owen应助TT采纳,获得10
21秒前
kid1912发布了新的文献求助50
21秒前
孙淳发布了新的文献求助10
25秒前
26秒前
26秒前
伯赏诗霜发布了新的文献求助10
26秒前
27秒前
27秒前
程哲瀚完成签到,获得积分10
27秒前
Brennan完成签到,获得积分10
28秒前
29秒前
29秒前
笨笨善若发布了新的文献求助10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849