Systematic Construction and Validation of a Novel Ferroptosis-Related Gene Model for Predicting Prognosis in Cervical Cancer

列线图 比例危险模型 Lasso(编程语言) 肿瘤科 宫颈癌 内科学 线性判别分析 回归 癌症 医学 计算生物学 生物 计算机科学 统计 人工智能 万维网 数学
作者
Wentao Qin,Can He,Daqiong Jiang,Yang Gao,Yu Chen,Min Su,Yuanjun Yang,Yang Zhao,Hongbing Cai,Hua Wang
出处
期刊:Journal of immunology research [Hindawi Limited]
卷期号:2022: 1-29 被引量:8
标识
DOI:10.1155/2022/2148215
摘要

Datasets containing RNA sequencing and corresponding clinical data of cervical cancer patients were obtained from searching publicly accessible databases. The "NMF" R package was conducted to calculate the matrix of the screened prognosis gene expression. Ferroptosis-related differential genes in cervical cancer were detected using the "limma" R function and WGCNA. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis were conducted to develop a novel prognostic signature. The prediction model was verified by the nomogram integrating clinical characteristics; the GSE44001 dataset was used as an external verification. Then, the immune status and tumor mutation load were explored. Finally, immunohistochemistry as well as quantitative polymerase chain reaction (RT-qPCR) was utilized to ascertain the expression of FRGs.Two molecular subgroups (cluster 1 and cluster 2) with different FRG expression patterns were recognized. A ferroptosis-related model based on 4 genes (VEGFA, CA9, DERL3, and RNF130) was developed through TCGA database to identify the unfavorable prognosis cases. Patients in cluster 1 showed significantly decreased overall survival in contrast with those in cluster 2 (P < 0.05). The LASSO technique and Cox regression analysis were both utilized to establish the independence of the prognostic model. The validity of nomogram prognostic predictions has been well demonstrated for 3- and 5-year survival in both internal and external data validation cohorts. These two subgroups showed striking differences in tumor-infiltrating leukocytes and tumor mutation burden. The low-risk subgroup showed a longer overall survival time with a higher immune cell score and higher tumor mutation rate. Gene functional enrichment analyses revealed predominant enrichment in various tumor-associated signaling pathways. Finally, the expression of each gene was confirmed by immunohistochemistry and RT-qPCR.A novel and comprehensive ferroptosis-related gene model was proposed for cervical cancer which was capable of distinguishing the patients independently with high risk for poor survival, and targeting ferroptosis may represent a promising approach for the treatment of CC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助ufuon采纳,获得10
1秒前
科研通AI5应助一独白采纳,获得10
2秒前
hearts_j完成签到,获得积分10
2秒前
FashionBoy应助yasan采纳,获得10
2秒前
安琪琪完成签到,获得积分10
3秒前
3秒前
端庄千琴完成签到,获得积分10
3秒前
gaogao完成签到,获得积分10
3秒前
菲菲公主完成签到,获得积分10
4秒前
4秒前
4秒前
英姑应助柒八染采纳,获得10
5秒前
退堂鼓发布了新的文献求助10
5秒前
党弛完成签到,获得积分10
5秒前
5秒前
6秒前
烂漫的松完成签到,获得积分10
6秒前
cheryl完成签到,获得积分10
6秒前
笑笑发布了新的文献求助10
7秒前
8秒前
9秒前
糟糕的霆完成签到 ,获得积分10
9秒前
婷婷发布了新的文献求助10
9秒前
9秒前
Anxinxin发布了新的文献求助10
9秒前
CipherSage应助xyz采纳,获得10
10秒前
10秒前
脑洞疼应助mjj采纳,获得10
10秒前
good关注了科研通微信公众号
11秒前
11秒前
punchline完成签到 ,获得积分10
11秒前
Ava应助April采纳,获得10
11秒前
苔原猫咪甜甜圈完成签到,获得积分10
12秒前
骑着蚂蚁追大象完成签到,获得积分10
12秒前
aaa发布了新的文献求助10
12秒前
12秒前
退堂鼓完成签到,获得积分20
12秒前
阿巴发布了新的文献求助10
12秒前
罗实发布了新的文献求助10
12秒前
愉快寄真完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762