Sample size optimization for clinical trials using graphical approaches for multiplicity adjustment

样本量测定 图形模型 统计能力 计算机科学 临床试验 临床终点 偏爱 二进制数 数学 统计 数学优化 医学 算术 病理
作者
Fengqing Zhang,Jiangtao Gou
出处
期刊:Statistics in Medicine [Wiley]
卷期号:42 (28): 5229-5246 被引量:1
标识
DOI:10.1002/sim.9909
摘要

Graphical approach provides a useful framework for multiplicity adjustment in clinical trials with multiple endpoints. When designing a graphical approach, initial weight and transition probability for the endpoints are often assigned based on clinical importance. For example, practitioners may prefer putting more weights on some primary endpoints. The clinical preference can be formulated as a constrain in the sample size optimization problem. However, there has been a lack of theoretical guidance on how to specify initial weight and transition probability in a graphical approach to meet the clinical preference but at the same time to minimize the sample size needed for a power requirement. To fill this gap, we propose statistical methods to optimize sample size over initial weight and transition probability in a graphical approach under a common setting, which is to use marginal power for each endpoint in a trial design. Importantly, we prove that some of the commonly used graphical approaches such as putting all initial weights on one endpoint are suboptimal. Our methods are flexible, which can be used for both single‐arm trials and randomized controlled trials with either continuous or binary or mixed types of endpoints. Additionally, we prove the existence of optimal solution where all marginal powers are placed exactly at the prespecified values, assuming continuity. Two hypothetical clinical trial designs are presented to illustrate the application of our methods under different scenarios. Results are first presented for a design with two endpoints and are further generalized to three or more endpoints. Our findings are helpful to guide the design of a graphical approach and the sample size calculation in clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实乌冬面完成签到 ,获得积分10
刚刚
科研通AI5应助拉斯特迪亚采纳,获得10
刚刚
司空悒完成签到,获得积分0
刚刚
12345发布了新的文献求助10
1秒前
1秒前
巫马白亦发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
糖糖发布了新的文献求助10
3秒前
阿毛完成签到,获得积分10
4秒前
Fury完成签到 ,获得积分10
5秒前
NexusExplorer应助zcz采纳,获得10
6秒前
阿毛发布了新的文献求助10
6秒前
拉斯特迪亚完成签到,获得积分20
8秒前
8秒前
8秒前
彳亍发布了新的文献求助10
9秒前
赖建琛完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
陶醉的海冬完成签到 ,获得积分10
10秒前
糖糖完成签到,获得积分10
10秒前
11秒前
小小完成签到,获得积分10
11秒前
傲娇的青荷完成签到,获得积分10
11秒前
humengxiao完成签到,获得积分10
12秒前
12秒前
周小贝贝完成签到,获得积分10
12秒前
李爱国应助孔涛采纳,获得10
13秒前
韩大大完成签到,获得积分10
13秒前
潇洒台灯完成签到,获得积分10
14秒前
14秒前
Joshua完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
12发布了新的文献求助10
15秒前
15秒前
16秒前
xumengyu发布了新的文献求助10
17秒前
18秒前
leoan完成签到,获得积分10
18秒前
zcz完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662106
求助须知:如何正确求助?哪些是违规求助? 3223001
关于积分的说明 9749628
捐赠科研通 2932748
什么是DOI,文献DOI怎么找? 1605829
邀请新用户注册赠送积分活动 758164
科研通“疑难数据库(出版商)”最低求助积分说明 734712