Geometry-informed dynamic mode decomposition in Kresling origami dynamics

可解释性 计算机科学 动态模态分解 混乱的 运动(物理) 动力学(音乐) DNA折纸 多样性(控制论) 拓扑(电路) 几何学 人工智能 工程类 物理 纳米技术 数学 材料科学 机器学习 纳米结构 电气工程 声学
作者
Shuaifeng Li,Yasuyuki Miyazawa,Koshiro Yamaguchi,P. G. Kevrekidis,Jinkyu Yang
出处
期刊:Extreme Mechanics Letters [Elsevier BV]
卷期号:64: 102082-102082 被引量:1
标识
DOI:10.1016/j.eml.2023.102082
摘要

Origami structures often serve as the building block of mechanical systems due to their rich static and dynamic behaviors. Experimental observation and theoretical modeling of origami dynamics have been reported extensively, whereas the data-driven modeling of origami dynamics is still challenging due to the intrinsic nonlinearity of the system. In this study, we show how the dynamic mode decomposition (DMD) method can be enhanced by integrating geometry information of the origami structure to model Kresling origami dynamics in an efficient and accurate manner. In particular, an improved version of DMD with control, that we term geometry-informed dynamic mode decomposition (giDMD), is developed and evaluated on the origami chain and dual Kresling origami structure to reveal the efficacy and interpretability. We show that giDMD can accurately predict the dynamics of an origami chain across frequencies, where the topological boundary state can be identified by the characteristics of giDMD. Moreover, the periodic intrawell motion can be accurately predicted in the dual origami structure. The type of dynamics in the dual origami structure can also be identified. The model learned by the giDMD also reveals the influential geometrical parameters in the origami dynamics, indicating the interpretability of this method. The accurate prediction of chaotic dynamics remains a challenge for the method. Nevertheless, we expect that the proposed giDMD approach will be helpful towards the prediction and identification of dynamics in complex origami structures, while paving the way to the application to a wider variety of lightweight and deployable structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听雪发布了新的文献求助10
1秒前
Thi发布了新的文献求助10
1秒前
Xx发布了新的文献求助10
3秒前
小嘎完成签到 ,获得积分10
4秒前
科研通AI2S应助皮卡丘采纳,获得10
5秒前
科研通AI5应助曾年珍采纳,获得10
6秒前
凯sa完成签到 ,获得积分20
7秒前
pluto应助小王同学采纳,获得50
8秒前
领导范儿应助逢写必中采纳,获得10
11秒前
在水一方应助巨瑞宁采纳,获得10
11秒前
11秒前
可乐加冰完成签到,获得积分10
14秒前
妮妮应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
zjdmw应助科研通管家采纳,获得10
14秒前
14秒前
yanzu应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
依玉发布了新的文献求助10
16秒前
dudu发布了新的文献求助10
16秒前
诚心闭月完成签到,获得积分10
17秒前
姜惠完成签到 ,获得积分10
18秒前
科研通AI5应助舒心青旋采纳,获得10
19秒前
19秒前
科研通AI5应助蕾蕾采纳,获得10
20秒前
可爱的函函应助唐磊采纳,获得10
21秒前
22秒前
zzz完成签到 ,获得积分10
23秒前
JamesPei应助Xx采纳,获得10
24秒前
呸呸晓鹏发布了新的文献求助10
24秒前
24秒前
25秒前
苻新竹发布了新的文献求助10
25秒前
完美世界应助许子恒采纳,获得10
25秒前
曾年珍发布了新的文献求助10
27秒前
28秒前
依玉完成签到,获得积分10
28秒前
28秒前
muliu发布了新的文献求助10
29秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726435
求助须知:如何正确求助?哪些是违规求助? 3271457
关于积分的说明 9972056
捐赠科研通 2986919
什么是DOI,文献DOI怎么找? 1638544
邀请新用户注册赠送积分活动 778142
科研通“疑难数据库(出版商)”最低求助积分说明 747469